-
Previous Article
An immersed linear finite element method with interface flux capturing recovery
- DCDS-B Home
- This Issue
-
Next Article
From a PDE model to an ODE model of dynamics of synaptic depression
Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability
1. | School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ |
2. | Ship Science, University of Southampton, Southampton SO17 1BJ, United Kingdom |
References:
[1] |
Izv. Atmos. Oceanic Phys., 15 (1979), 711-716. Google Scholar |
[2] |
Math. Comp. Simul., 74 (2007), 159-167.
doi: 10.1016/j.matcom.2006.10.010. |
[3] |
J. Atmos. Sci., 36 (1979), 1205-1216.
doi: 10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2. |
[4] |
Stud. Appl. Math., 62 (1980), 1-21. |
[5] |
J. Fluids Stuct., 28 (2012), 378-391.
doi: 10.1016/j.jfluidstructs.2011.10.003. |
[6] |
Proc. R. Soc. A, 299 (1967), 59-75.
doi: 10.1098/rspa.1967.0123. |
[7] |
J. Fluid Mech., 27 (1967), 417-430.
doi: 10.1017/S002211206700045X. |
[8] |
Arch. Ratianal Mech. Anal., 133 (1995), 145-198.
doi: 10.1007/BF00376815. |
[9] |
Cambridge University Press, Cambridge, 1932. Google Scholar |
[10] |
Proc. R. Soc. Lond. Ser. A, 396 (1984), 269-280.
doi: 10.1098/rspa.1984.0122. |
[11] |
J. Fluid Mech., 27 (1967), 395-397.
doi: 10.1017/S0022112067000412. |
[12] |
Springer-Verlag, New York, 1979. Google Scholar |
[13] |
J. Fluid Mech., 539 (2005), 229-271. |
[14] |
Trans. Cambridge Philos. Soc., 8 (1847), 441-473. Google Scholar |
[15] |
J. Phys. Soc. Japan, 52 (1983), 3047-3055.
doi: 10.1143/JPSJ.52.3047. |
[16] |
J. Fluid Mech., 156 (1985), 281-289.
doi: 10.1017/S0022112085002099. |
[17] |
Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. |
[18] |
Comm. Pure Appl. Math., 41 (1988), 19-46.
doi: 10.1002/cpa.3160410104. |
[19] |
J. Fluid Mech., 556 (2006), 45-54.
doi: 10.1017/S0022112005008293. |
[20] |
J. Appl. Mech. Tech. Phys., 2 (1968), 190-194. Google Scholar |
show all references
References:
[1] |
Izv. Atmos. Oceanic Phys., 15 (1979), 711-716. Google Scholar |
[2] |
Math. Comp. Simul., 74 (2007), 159-167.
doi: 10.1016/j.matcom.2006.10.010. |
[3] |
J. Atmos. Sci., 36 (1979), 1205-1216.
doi: 10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2. |
[4] |
Stud. Appl. Math., 62 (1980), 1-21. |
[5] |
J. Fluids Stuct., 28 (2012), 378-391.
doi: 10.1016/j.jfluidstructs.2011.10.003. |
[6] |
Proc. R. Soc. A, 299 (1967), 59-75.
doi: 10.1098/rspa.1967.0123. |
[7] |
J. Fluid Mech., 27 (1967), 417-430.
doi: 10.1017/S002211206700045X. |
[8] |
Arch. Ratianal Mech. Anal., 133 (1995), 145-198.
doi: 10.1007/BF00376815. |
[9] |
Cambridge University Press, Cambridge, 1932. Google Scholar |
[10] |
Proc. R. Soc. Lond. Ser. A, 396 (1984), 269-280.
doi: 10.1098/rspa.1984.0122. |
[11] |
J. Fluid Mech., 27 (1967), 395-397.
doi: 10.1017/S0022112067000412. |
[12] |
Springer-Verlag, New York, 1979. Google Scholar |
[13] |
J. Fluid Mech., 539 (2005), 229-271. |
[14] |
Trans. Cambridge Philos. Soc., 8 (1847), 441-473. Google Scholar |
[15] |
J. Phys. Soc. Japan, 52 (1983), 3047-3055.
doi: 10.1143/JPSJ.52.3047. |
[16] |
J. Fluid Mech., 156 (1985), 281-289.
doi: 10.1017/S0022112085002099. |
[17] |
Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. |
[18] |
Comm. Pure Appl. Math., 41 (1988), 19-46.
doi: 10.1002/cpa.3160410104. |
[19] |
J. Fluid Mech., 556 (2006), 45-54.
doi: 10.1017/S0022112005008293. |
[20] |
J. Appl. Mech. Tech. Phys., 2 (1968), 190-194. Google Scholar |
[1] |
Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055 |
[2] |
Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021 |
[3] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[4] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[5] |
Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389 |
[6] |
Yu Yang, Jinling Zhou, Cheng-Hsiung Hsu. Critical traveling wave solutions for a vaccination model with general incidence. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021087 |
[7] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004 |
[8] |
Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021048 |
[9] |
Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043 |
[10] |
Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021019 |
[11] |
Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057 |
[12] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241 |
[13] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[14] |
Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207 |
[15] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021011 |
[16] |
Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006 |
[17] |
Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021100 |
[18] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 |
[19] |
Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021086 |
[20] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]