• Previous Article
    Stability conditions for a class of delay differential equations in single species population dynamics
  • DCDS-B Home
  • This Issue
  • Next Article
    Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations
October  2012, 17(7): 2431-2449. doi: 10.3934/dcdsb.2012.17.2431

Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition

1. 

Department of Mathematics and Research Institute for Basic Sciences, Kyung Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-701, South Korea

2. 

Department of Mathematics, National Taiwan University, Taipei, 10617

Received  June 2011 Revised  March 2012 Published  July 2012

In this article, we study the stability and dynamic bifurcation for the two dimensional Swift-Hohenberg equation with an odd periodic condition. It is shown that an attractor bifurcates from the trivial solution as the control parameter crosses the critical value. The bifurcated attractor consists of finite number of singular points and their connecting orbits. Using the center manifold theory, we verify the nondegeneracy and the stability of the singular points.
Citation: Jongmin Han, Chun-Hsiung Hsia. Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2431-2449. doi: 10.3934/dcdsb.2012.17.2431
References:
[1]

I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equations,, Rev. Mod. Phys., 74 (2002), 99.  doi: 10.1103/RevModPhys.74.99.  Google Scholar

[2]

M. C. Cross and P. C. Hohenberg, Pattern formation outside of equillibrium,, Rev. Mod. Phys., 65 (1993), 851.  doi: 10.1103/RevModPhys.65.851.  Google Scholar

[3]

S. Day, Y. Hiraoka, K. Mischaikow and T. Ogawa, Rigorous numerics for global dynamics: A study of the Swift-Hohenberg equationm,, SIAM J. Appl. Dyn. Sys., 4 (2005), 1.   Google Scholar

[4]

J. P. Gollub and J. S. Langer, Pattern formation in nonequilibrium physics,, Rev. Mod. Phys., 71 (1999), 396.  doi: 10.1103/RevModPhys.71.S396.  Google Scholar

[5]

J. Han and M. Yari, Dynamic bifurcation of the one-dimensional periodic Swift-Hohenberg equation,, Bull. Korean Math. Soc., ().   Google Scholar

[6]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981).   Google Scholar

[7]

T. Ma and S. Wang, "Bifurcation Theory and Applications,", World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 53 (2005).   Google Scholar

[8]

T. Ma and S. Wang, "Phase Transition Dynamics in Nonlinear Sciences,", Springer, ().   Google Scholar

[9]

L. A. Peletier and, V. Rottschäfer, Pattern selection of solutions of the Swift-Hohenberg equation,, Physica D, 194 (2004), 95.  doi: 10.1016/j.physd.2004.01.043.  Google Scholar

[10]

L. A. Peletier and W. C. Troy, "Spatial Patterns: Higher Order Models in Physics and Mecahnics,", Progress in Nonlinear Differential Equations and their Applications, 45 (2001).   Google Scholar

[11]

L. A. Peletier and J. F. Williams, Some canonical bifurcations in the Swift-Hohenberg equation,, SIAM J. Appl. Dyn. Sys., 6 (2007), 208.   Google Scholar

[12]

J. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability,, Phys. Rev. A, 15 (1977), 319.  doi: 10.1103/PhysRevA.15.319.  Google Scholar

[13]

M. Yari, Attractor bifurcation and final patterns of the n-dimensional and generalized Swift-Hohenberg equations,, Dis. Cont. Dyn. Sys. Ser. B, 7 (2007), 441.   Google Scholar

show all references

References:
[1]

I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equations,, Rev. Mod. Phys., 74 (2002), 99.  doi: 10.1103/RevModPhys.74.99.  Google Scholar

[2]

M. C. Cross and P. C. Hohenberg, Pattern formation outside of equillibrium,, Rev. Mod. Phys., 65 (1993), 851.  doi: 10.1103/RevModPhys.65.851.  Google Scholar

[3]

S. Day, Y. Hiraoka, K. Mischaikow and T. Ogawa, Rigorous numerics for global dynamics: A study of the Swift-Hohenberg equationm,, SIAM J. Appl. Dyn. Sys., 4 (2005), 1.   Google Scholar

[4]

J. P. Gollub and J. S. Langer, Pattern formation in nonequilibrium physics,, Rev. Mod. Phys., 71 (1999), 396.  doi: 10.1103/RevModPhys.71.S396.  Google Scholar

[5]

J. Han and M. Yari, Dynamic bifurcation of the one-dimensional periodic Swift-Hohenberg equation,, Bull. Korean Math. Soc., ().   Google Scholar

[6]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981).   Google Scholar

[7]

T. Ma and S. Wang, "Bifurcation Theory and Applications,", World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 53 (2005).   Google Scholar

[8]

T. Ma and S. Wang, "Phase Transition Dynamics in Nonlinear Sciences,", Springer, ().   Google Scholar

[9]

L. A. Peletier and, V. Rottschäfer, Pattern selection of solutions of the Swift-Hohenberg equation,, Physica D, 194 (2004), 95.  doi: 10.1016/j.physd.2004.01.043.  Google Scholar

[10]

L. A. Peletier and W. C. Troy, "Spatial Patterns: Higher Order Models in Physics and Mecahnics,", Progress in Nonlinear Differential Equations and their Applications, 45 (2001).   Google Scholar

[11]

L. A. Peletier and J. F. Williams, Some canonical bifurcations in the Swift-Hohenberg equation,, SIAM J. Appl. Dyn. Sys., 6 (2007), 208.   Google Scholar

[12]

J. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability,, Phys. Rev. A, 15 (1977), 319.  doi: 10.1103/PhysRevA.15.319.  Google Scholar

[13]

M. Yari, Attractor bifurcation and final patterns of the n-dimensional and generalized Swift-Hohenberg equations,, Dis. Cont. Dyn. Sys. Ser. B, 7 (2007), 441.   Google Scholar

[1]

Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021003

[2]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[3]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[4]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[5]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[6]

Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020370

[7]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[8]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[9]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[10]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[11]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[12]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281

[13]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[14]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[15]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[16]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[17]

Hanyu Gu, Hue Chi Lam, Yakov Zinder. Planning rolling stock maintenance: Optimization of train arrival dates at a maintenance center. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020177

[18]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[19]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[20]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]