• Previous Article
    Stability conditions for a class of delay differential equations in single species population dynamics
  • DCDS-B Home
  • This Issue
  • Next Article
    Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations
October  2012, 17(7): 2431-2449. doi: 10.3934/dcdsb.2012.17.2431

Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition

1. 

Department of Mathematics and Research Institute for Basic Sciences, Kyung Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-701, South Korea

2. 

Department of Mathematics, National Taiwan University, Taipei, 10617

Received  June 2011 Revised  March 2012 Published  July 2012

In this article, we study the stability and dynamic bifurcation for the two dimensional Swift-Hohenberg equation with an odd periodic condition. It is shown that an attractor bifurcates from the trivial solution as the control parameter crosses the critical value. The bifurcated attractor consists of finite number of singular points and their connecting orbits. Using the center manifold theory, we verify the nondegeneracy and the stability of the singular points.
Citation: Jongmin Han, Chun-Hsiung Hsia. Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2431-2449. doi: 10.3934/dcdsb.2012.17.2431
References:
[1]

I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equations, Rev. Mod. Phys., 74 (2002), 99-143. doi: 10.1103/RevModPhys.74.99.

[2]

M. C. Cross and P. C. Hohenberg, Pattern formation outside of equillibrium, Rev. Mod. Phys., 65 (1993), 851-1112. doi: 10.1103/RevModPhys.65.851.

[3]

S. Day, Y. Hiraoka, K. Mischaikow and T. Ogawa, Rigorous numerics for global dynamics: A study of the Swift-Hohenberg equationm, SIAM J. Appl. Dyn. Sys., 4 (2005), 1-31.

[4]

J. P. Gollub and J. S. Langer, Pattern formation in nonequilibrium physics, Rev. Mod. Phys., 71 (1999), 396-403. doi: 10.1103/RevModPhys.71.S396.

[5]

J. Han and M. Yari, Dynamic bifurcation of the one-dimensional periodic Swift-Hohenberg equation, Bull. Korean Math. Soc., to appear.

[6]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.

[7]

T. Ma and S. Wang, "Bifurcation Theory and Applications," World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 53, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.

[8]

T. Ma and S. Wang, "Phase Transition Dynamics in Nonlinear Sciences," Springer, in press.

[9]

L. A. Peletier and, V. Rottschäfer, Pattern selection of solutions of the Swift-Hohenberg equation, Physica D, 194 (2004), 95-126. doi: 10.1016/j.physd.2004.01.043.

[10]

L. A. Peletier and W. C. Troy, "Spatial Patterns: Higher Order Models in Physics and Mecahnics," Progress in Nonlinear Differential Equations and their Applications, 45, Birkhäuser Boston, Inc., Boston, MA, 2001.

[11]

L. A. Peletier and J. F. Williams, Some canonical bifurcations in the Swift-Hohenberg equation, SIAM J. Appl. Dyn. Sys., 6 (2007), 208-235.

[12]

J. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, 15 (1977), 319-328. doi: 10.1103/PhysRevA.15.319.

[13]

M. Yari, Attractor bifurcation and final patterns of the n-dimensional and generalized Swift-Hohenberg equations, Dis. Cont. Dyn. Sys. Ser. B, 7 (2007), 441-456.

show all references

References:
[1]

I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equations, Rev. Mod. Phys., 74 (2002), 99-143. doi: 10.1103/RevModPhys.74.99.

[2]

M. C. Cross and P. C. Hohenberg, Pattern formation outside of equillibrium, Rev. Mod. Phys., 65 (1993), 851-1112. doi: 10.1103/RevModPhys.65.851.

[3]

S. Day, Y. Hiraoka, K. Mischaikow and T. Ogawa, Rigorous numerics for global dynamics: A study of the Swift-Hohenberg equationm, SIAM J. Appl. Dyn. Sys., 4 (2005), 1-31.

[4]

J. P. Gollub and J. S. Langer, Pattern formation in nonequilibrium physics, Rev. Mod. Phys., 71 (1999), 396-403. doi: 10.1103/RevModPhys.71.S396.

[5]

J. Han and M. Yari, Dynamic bifurcation of the one-dimensional periodic Swift-Hohenberg equation, Bull. Korean Math. Soc., to appear.

[6]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981.

[7]

T. Ma and S. Wang, "Bifurcation Theory and Applications," World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 53, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.

[8]

T. Ma and S. Wang, "Phase Transition Dynamics in Nonlinear Sciences," Springer, in press.

[9]

L. A. Peletier and, V. Rottschäfer, Pattern selection of solutions of the Swift-Hohenberg equation, Physica D, 194 (2004), 95-126. doi: 10.1016/j.physd.2004.01.043.

[10]

L. A. Peletier and W. C. Troy, "Spatial Patterns: Higher Order Models in Physics and Mecahnics," Progress in Nonlinear Differential Equations and their Applications, 45, Birkhäuser Boston, Inc., Boston, MA, 2001.

[11]

L. A. Peletier and J. F. Williams, Some canonical bifurcations in the Swift-Hohenberg equation, SIAM J. Appl. Dyn. Sys., 6 (2007), 208-235.

[12]

J. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, 15 (1977), 319-328. doi: 10.1103/PhysRevA.15.319.

[13]

M. Yari, Attractor bifurcation and final patterns of the n-dimensional and generalized Swift-Hohenberg equations, Dis. Cont. Dyn. Sys. Ser. B, 7 (2007), 441-456.

[1]

Jongmin Han, Masoud Yari. Dynamic bifurcation of the complex Swift-Hohenberg equation. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 875-891. doi: 10.3934/dcdsb.2009.11.875

[2]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Doo Seok Lee. Bifurcation and final patterns of a modified Swift-Hohenberg equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2543-2567. doi: 10.3934/dcdsb.2017087

[3]

Toshiyuki Ogawa, Takashi Okuda. Bifurcation analysis to Swift-Hohenberg equation with Steklov type boundary conditions. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 273-297. doi: 10.3934/dcds.2009.25.273

[4]

Masoud Yari. Attractor bifurcation and final patterns of the n-dimensional and generalized Swift-Hohenberg equations. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 441-456. doi: 10.3934/dcdsb.2007.7.441

[5]

J. Burke, Edgar Knobloch. Multipulse states in the Swift-Hohenberg equation. Conference Publications, 2009, 2009 (Special) : 109-117. doi: 10.3934/proc.2009.2009.109

[6]

Peng Gao. Averaging principles for the Swift-Hohenberg equation. Communications on Pure and Applied Analysis, 2020, 19 (1) : 293-310. doi: 10.3934/cpaa.2020016

[7]

Ling-Jun Wang. The dynamics of small amplitude solutions of the Swift-Hohenberg equation on a large interval. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1129-1156. doi: 10.3934/cpaa.2012.11.1129

[8]

Yanfeng Guo, Jinqiao Duan, Donglong Li. Approximation of random invariant manifolds for a stochastic Swift-Hohenberg equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1701-1715. doi: 10.3934/dcdss.2016071

[9]

Yixia Shi, Maoan Han. Existence of generalized homoclinic solutions for a modified Swift-Hohenberg equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3189-3204. doi: 10.3934/dcdss.2020114

[10]

Shengfu Deng. Periodic solutions and homoclinic solutions for a Swift-Hohenberg equation with dispersion. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1647-1662. doi: 10.3934/dcdss.2016068

[11]

John Burke, Edgar Knobloch. Normal form for spatial dynamics in the Swift-Hohenberg equation. Conference Publications, 2007, 2007 (Special) : 170-180. doi: 10.3934/proc.2007.2007.170

[12]

Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6069-6090. doi: 10.3934/dcdsb.2021003

[13]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure and Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[14]

Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249

[15]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks and Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897

[16]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009

[17]

Robert Skiba, Nils Waterstraat. The index bundle and multiparameter bifurcation for discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5603-5629. doi: 10.3934/dcds.2017243

[18]

Thai Son Doan, Martin Rasmussen, Peter E. Kloeden. The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 875-887. doi: 10.3934/dcdsb.2015.20.875

[19]

Tian Ma, Shouhong Wang. Attractor bifurcation theory and its applications to Rayleigh-Bénard convection. Communications on Pure and Applied Analysis, 2003, 2 (4) : 591-599. doi: 10.3934/cpaa.2003.2.591

[20]

Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure and Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (158)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]