• Previous Article
    A simple regulatory circuit that can simultaneously generate excitability of two different mechanisms
  • DCDS-B Home
  • This Issue
  • Next Article
    On a nonlocal reaction-diffusion-advection system modeling phytoplankton growth with light and nutrients
January  2012, 17(1): 245-269. doi: 10.3934/dcdsb.2012.17.245

Shooting and numerical continuation methods for computing time-minimal and energy-minimal trajectories in the Earth-Moon system using low propulsion

1. 

Mathematics Institute, Bourgogne University, 9 avenue Savary, 21078 Dijon, France

Received  March 2010 Revised  April 2011 Published  October 2011

In this article we describe the principle of computations of optimal transfers between quasi-Keplerian orbits in the Earth-Moon system using low-propulsion. The spacecraft's motion is modelled by the equations of the control restricted 3-body problem and we base our work on previous studies concerning the orbit transfer in the two-body problem where geometric and numeric methods were developed to compute optimal solutions. Using numerical simple shooting and continuation methods connected with fundamental results from control theory, such as the Pontryagin Maxium Principle and the second order optimality conditions related to the concept of conjugate points, we compute time-minimal and energy-minimal trajectories between the geostationary initial orbit and a final circular orbit around the Moon, passing through the neighborhood of the libration point $L_1$. Our computations give simple trajectories, obtained by referring to numerical values of the SMART-1 mission.
Citation: Gautier Picot. Shooting and numerical continuation methods for computing time-minimal and energy-minimal trajectories in the Earth-Moon system using low propulsion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 245-269. doi: 10.3934/dcdsb.2012.17.245
References:
[1]

A. A. Agrachev and A. V. Sarychev, On abnormals extremals for Lagrange variational problems, J. Math. Systems Estim. Control, 8 (1998), 87-118.

[2]

E. L Allgower and K. Georg, "Numerical Continuation Methods. An Introduction," Springer Series in Computational Mathematics, 13, Springer-Verlag, Berlin, 1990.

[3]

V. I. Arnol'd, "Mathematical Methods of Classical Mechanics," Second edition, Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1989.

[4]

J. T. Betts and S. O. Erb, Optimal low thrust trajectories to the moon, SIAM J. Appl. Dyn. Syst., 2 (2003), 144-170. doi: 10.1137/S1111111102409080.

[5]

C. Bischof, A. Carle, P. Kladem and A. Mauer, Adifor 2.0: Automatic Differentiation of Fortran 77 programs, IEEE Computational Science and Engineering, 3 (1996), 18-32. doi: 10.1109/99.537089.

[6]

G. A. Bliss, "Lectures on the Calculus of Variations," University of Chicago Press, Chicago, Ill., 1946.

[7]

A. Bombrun, J. Chetboun and J.-B. Pomet, Transfert Terre-Lune en poussée faible par contrôle feedback - La mission SMART-1, (French) INRIA Research Report, 5955 (2006), 1-27.

[8]

B. Bonnard, J.-B. Caillau and G. Picot, Geometric and numerical techniques in optimal control of the two and three-body problems, Commun. Inf. Syst., 10 (2010), 239-278.

[9]

B. Bonnard, J.-B. Caillau and E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control, ESAIM Control Optim. and Calc. Var., 13 (2007), 207-236.

[10]

B. Bonnard, J.-B. Caillau and E. Trélat, COTCOT: Short reference manual, ENSEEIHT-IRIT Technical Report RT/APO/05/1, (2005), 1-15.

[11]

B. Bonnard and M. Chyba, "Singular Trajectories and Their Role in Control Theory," Math. and Applications, 40, Springer-Verlag, Berlin, 2003.

[12]

B. Bonnard, L. Faubourg and E. Trélat, "Mécanique Céleste et Contôle des Véhicules Spatiaux," Mathématiques & Applications (Berlin), 51, Springer-Verlag, Berlin, 2006.

[13]

B. Bonnard and I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, (French)[Theory of the singularities of the input/output mapping and optimality of singular trajectories in the minimal-time problem], Forum Math., 5 (1993), 111-159. doi: 10.1515/form.1993.5.111.

[14]

B. Bonnard, N. Shcherbakova and D. Sugny, The smooth continuation method in optimal control with an application to quantum systems, ESAIM Control Optim. and Calc. Var., 17 (2011), 267-292. doi: 10.1051/cocv/2010004.

[15]

J.-B. Caillau, "Contribution à l'Etude du Contrôle en Temps Minimal des Transferts Orbitaux," Ph.D thesis, Toulouse University, 2000.

[16]

J.-B. Caillau, B. Daoud and J. Gergaud, On some Riemannian aspects of two and three-body controlled problems, in "Recent Advances in Optimization and its Applications in Engineering," Springer, (2010), 205-224.

[17]

J.-B. Caillau, B. Daoud and J. Gergaud, Discrete and differential homotopy in circular restricted three-body control, to appear in AIMS Proceedings, 2010.

[18]

J. Gergaud and T. Haberkorn, Homotopy method for minimum consumption orbit transfer problem, ESAIM Control Optim. Calc. Var., 12 (2006), 294-310. doi: 10.1051/cocv:2006003.

[19]

G. Gómez, S. Koon, M. Lo, J. E. Marsden, J. Masdemont and S. D. Ross, Invariant manifolds, the spatial three-body problem ans space mission design, in "The Proceedings of AIAA/AAS Astrodynamics Specialist Meeting," Quebec City, Quebec, Canada, 2001.

[20]

M. Guerra and A. Sarychev, Existence and Lipschitzian regularity for relaxed minimizers, in "Mathematical Control Theory and Finance," Springer, Berlin, (2008), 231-250.

[21]

J. E. Marsden and S. D. Ross, New methods in celestial mechanics and mission design, Bull. Amer. Math. Soc. (N.S), 43 (2006), 43-73.

[22]

K. Meyer and G. R. Hall, "Introduction to Hamiltonian Dynamical Systems and the $N$-Body Problem," Applied Mathematical Sciences, 90, Springer-Verlag, New York, 1992.

[23]

H. Poincaré, "Oeuvres," Gauthier-Villars, Paris, 1934.

[24]

H. Pollard, "Mathematical Introduction to Celestial Mechanics," Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966.

[25]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes," Interscience Publishers John Wiley & Sons, Inc., New York-London, 1962.

[26]

G. Racca, B. H. Foing and M. Coradini, SMART-1: The first time of Europe to the moon, Earth, Moon and Planets, 85-86 (2001), 379-390.

[27]

G. Racca, et al., SMART-1 mission description and development status, Planetary and Space Science, 50 (2002), 1323-1337.

[28]

A. V. Saryčev, Index of second variation of a control system, Mat. Sb. (N.S.), 113(155) (1980), 464-486, 496.

[29]

L. F. Shampine, H. A. Watts and S. Davenport, Solving non-stiff ordinary differential equations-the state of the art, SIAM Rev., 18 (1976), 376-411.

[30]

V. Szebehely, "Theory of Orbits: The Restricted Problem of Three Bodies," Academic Press, 1967.

show all references

References:
[1]

A. A. Agrachev and A. V. Sarychev, On abnormals extremals for Lagrange variational problems, J. Math. Systems Estim. Control, 8 (1998), 87-118.

[2]

E. L Allgower and K. Georg, "Numerical Continuation Methods. An Introduction," Springer Series in Computational Mathematics, 13, Springer-Verlag, Berlin, 1990.

[3]

V. I. Arnol'd, "Mathematical Methods of Classical Mechanics," Second edition, Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1989.

[4]

J. T. Betts and S. O. Erb, Optimal low thrust trajectories to the moon, SIAM J. Appl. Dyn. Syst., 2 (2003), 144-170. doi: 10.1137/S1111111102409080.

[5]

C. Bischof, A. Carle, P. Kladem and A. Mauer, Adifor 2.0: Automatic Differentiation of Fortran 77 programs, IEEE Computational Science and Engineering, 3 (1996), 18-32. doi: 10.1109/99.537089.

[6]

G. A. Bliss, "Lectures on the Calculus of Variations," University of Chicago Press, Chicago, Ill., 1946.

[7]

A. Bombrun, J. Chetboun and J.-B. Pomet, Transfert Terre-Lune en poussée faible par contrôle feedback - La mission SMART-1, (French) INRIA Research Report, 5955 (2006), 1-27.

[8]

B. Bonnard, J.-B. Caillau and G. Picot, Geometric and numerical techniques in optimal control of the two and three-body problems, Commun. Inf. Syst., 10 (2010), 239-278.

[9]

B. Bonnard, J.-B. Caillau and E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control, ESAIM Control Optim. and Calc. Var., 13 (2007), 207-236.

[10]

B. Bonnard, J.-B. Caillau and E. Trélat, COTCOT: Short reference manual, ENSEEIHT-IRIT Technical Report RT/APO/05/1, (2005), 1-15.

[11]

B. Bonnard and M. Chyba, "Singular Trajectories and Their Role in Control Theory," Math. and Applications, 40, Springer-Verlag, Berlin, 2003.

[12]

B. Bonnard, L. Faubourg and E. Trélat, "Mécanique Céleste et Contôle des Véhicules Spatiaux," Mathématiques & Applications (Berlin), 51, Springer-Verlag, Berlin, 2006.

[13]

B. Bonnard and I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, (French)[Theory of the singularities of the input/output mapping and optimality of singular trajectories in the minimal-time problem], Forum Math., 5 (1993), 111-159. doi: 10.1515/form.1993.5.111.

[14]

B. Bonnard, N. Shcherbakova and D. Sugny, The smooth continuation method in optimal control with an application to quantum systems, ESAIM Control Optim. and Calc. Var., 17 (2011), 267-292. doi: 10.1051/cocv/2010004.

[15]

J.-B. Caillau, "Contribution à l'Etude du Contrôle en Temps Minimal des Transferts Orbitaux," Ph.D thesis, Toulouse University, 2000.

[16]

J.-B. Caillau, B. Daoud and J. Gergaud, On some Riemannian aspects of two and three-body controlled problems, in "Recent Advances in Optimization and its Applications in Engineering," Springer, (2010), 205-224.

[17]

J.-B. Caillau, B. Daoud and J. Gergaud, Discrete and differential homotopy in circular restricted three-body control, to appear in AIMS Proceedings, 2010.

[18]

J. Gergaud and T. Haberkorn, Homotopy method for minimum consumption orbit transfer problem, ESAIM Control Optim. Calc. Var., 12 (2006), 294-310. doi: 10.1051/cocv:2006003.

[19]

G. Gómez, S. Koon, M. Lo, J. E. Marsden, J. Masdemont and S. D. Ross, Invariant manifolds, the spatial three-body problem ans space mission design, in "The Proceedings of AIAA/AAS Astrodynamics Specialist Meeting," Quebec City, Quebec, Canada, 2001.

[20]

M. Guerra and A. Sarychev, Existence and Lipschitzian regularity for relaxed minimizers, in "Mathematical Control Theory and Finance," Springer, Berlin, (2008), 231-250.

[21]

J. E. Marsden and S. D. Ross, New methods in celestial mechanics and mission design, Bull. Amer. Math. Soc. (N.S), 43 (2006), 43-73.

[22]

K. Meyer and G. R. Hall, "Introduction to Hamiltonian Dynamical Systems and the $N$-Body Problem," Applied Mathematical Sciences, 90, Springer-Verlag, New York, 1992.

[23]

H. Poincaré, "Oeuvres," Gauthier-Villars, Paris, 1934.

[24]

H. Pollard, "Mathematical Introduction to Celestial Mechanics," Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966.

[25]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes," Interscience Publishers John Wiley & Sons, Inc., New York-London, 1962.

[26]

G. Racca, B. H. Foing and M. Coradini, SMART-1: The first time of Europe to the moon, Earth, Moon and Planets, 85-86 (2001), 379-390.

[27]

G. Racca, et al., SMART-1 mission description and development status, Planetary and Space Science, 50 (2002), 1323-1337.

[28]

A. V. Saryčev, Index of second variation of a control system, Mat. Sb. (N.S.), 113(155) (1980), 464-486, 496.

[29]

L. F. Shampine, H. A. Watts and S. Davenport, Solving non-stiff ordinary differential equations-the state of the art, SIAM Rev., 18 (1976), 376-411.

[30]

V. Szebehely, "Theory of Orbits: The Restricted Problem of Three Bodies," Academic Press, 1967.

[1]

Gianni Arioli. Branches of periodic orbits for the planar restricted 3-body problem. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 745-755. doi: 10.3934/dcds.2004.11.745

[2]

Alain Albouy, Holger R. Dullin. Relative equilibria of the 3-body problem in $ \mathbb{R}^4 $. Journal of Geometric Mechanics, 2020, 12 (3) : 323-341. doi: 10.3934/jgm.2020012

[3]

E. Canalias, Josep J. Masdemont. Homoclinic and heteroclinic transfer trajectories between planar Lyapunov orbits in the sun-earth and earth-moon systems. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 261-279. doi: 10.3934/dcds.2006.14.261

[4]

Holger R. Dullin, Jürgen Scheurle. Symmetry reduction of the 3-body problem in $ \mathbb{R}^4 $. Journal of Geometric Mechanics, 2020, 12 (3) : 377-394. doi: 10.3934/jgm.2020011

[5]

Giovanni F. Gronchi, Chiara Tardioli. The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1323-1344. doi: 10.3934/dcdsb.2013.18.1323

[6]

Alain Chenciner, Jacques Féjoz. The flow of the equal-mass spatial 3-body problem in the neighborhood of the equilateral relative equilibrium. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 421-438. doi: 10.3934/dcdsb.2008.10.421

[7]

M. Zuhair Nashed, Alexandru Tamasan. Structural stability in a minimization problem and applications to conductivity imaging. Inverse Problems and Imaging, 2011, 5 (1) : 219-236. doi: 10.3934/ipi.2011.5.219

[8]

Naoufel Ben Abdallah, Irene M. Gamba, Giuseppe Toscani. On the minimization problem of sub-linear convex functionals. Kinetic and Related Models, 2011, 4 (4) : 857-871. doi: 10.3934/krm.2011.4.857

[9]

Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55

[10]

Samuel R. Kaplan, Mark Levi, Richard Montgomery. Making the moon reverse its orbit, or, stuttering in the planar three-body problem. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 569-595. doi: 10.3934/dcdsb.2008.10.569

[11]

Lauri Oksanen. Solving an inverse problem for the wave equation by using a minimization algorithm and time-reversed measurements. Inverse Problems and Imaging, 2011, 5 (3) : 731-744. doi: 10.3934/ipi.2011.5.731

[12]

Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308

[13]

Ethel Mokotoff. Algorithms for bicriteria minimization in the permutation flow shop scheduling problem. Journal of Industrial and Management Optimization, 2011, 7 (1) : 253-282. doi: 10.3934/jimo.2011.7.253

[14]

Yoshiho Akagawa, Elliott Ginder, Syota Koide, Seiro Omata, Karel Svadlenka. A Crank-Nicolson type minimization scheme for a hyperbolic free boundary problem. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2661-2681. doi: 10.3934/dcdsb.2021153

[15]

Krzysztof Bartosz. Numerical analysis of a nonmonotone dynamic contact problem of a non-clamped piezoelectric viscoelastic body. Evolution Equations and Control Theory, 2020, 9 (4) : 961-980. doi: 10.3934/eect.2020059

[16]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[17]

Elbaz I. Abouelmagd, Juan Luis García Guirao, Jaume Llibre. Periodic orbits for the perturbed planar circular restricted 3–body problem. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1007-1020. doi: 10.3934/dcdsb.2019003

[18]

Martha Alvarez-Ramírez, Joaquín Delgado. Blow up of the isosceles 3--body problem with an infinitesimal mass. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1149-1173. doi: 10.3934/dcds.2003.9.1149

[19]

Samuel R. Kaplan, Ernesto A. Lacomba, Jaume Llibre. Symbolic dynamics of the elliptic rectilinear restricted 3--body problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 541-555. doi: 10.3934/dcdss.2008.1.541

[20]

Sergey V. Bolotin, Piero Negrini. Variational approach to second species periodic solutions of Poincaré of the 3 body problem. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1009-1032. doi: 10.3934/dcds.2013.33.1009

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (108)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]