• Previous Article
    A simple regulatory circuit that can simultaneously generate excitability of two different mechanisms
  • DCDS-B Home
  • This Issue
  • Next Article
    On a nonlocal reaction-diffusion-advection system modeling phytoplankton growth with light and nutrients
January  2012, 17(1): 245-269. doi: 10.3934/dcdsb.2012.17.245

Shooting and numerical continuation methods for computing time-minimal and energy-minimal trajectories in the Earth-Moon system using low propulsion

1. 

Mathematics Institute, Bourgogne University, 9 avenue Savary, 21078 Dijon, France

Received  March 2010 Revised  April 2011 Published  October 2011

In this article we describe the principle of computations of optimal transfers between quasi-Keplerian orbits in the Earth-Moon system using low-propulsion. The spacecraft's motion is modelled by the equations of the control restricted 3-body problem and we base our work on previous studies concerning the orbit transfer in the two-body problem where geometric and numeric methods were developed to compute optimal solutions. Using numerical simple shooting and continuation methods connected with fundamental results from control theory, such as the Pontryagin Maxium Principle and the second order optimality conditions related to the concept of conjugate points, we compute time-minimal and energy-minimal trajectories between the geostationary initial orbit and a final circular orbit around the Moon, passing through the neighborhood of the libration point $L_1$. Our computations give simple trajectories, obtained by referring to numerical values of the SMART-1 mission.
Citation: Gautier Picot. Shooting and numerical continuation methods for computing time-minimal and energy-minimal trajectories in the Earth-Moon system using low propulsion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 245-269. doi: 10.3934/dcdsb.2012.17.245
References:
[1]

A. A. Agrachev and A. V. Sarychev, On abnormals extremals for Lagrange variational problems,, J. Math. Systems Estim. Control, 8 (1998), 87.   Google Scholar

[2]

E. L Allgower and K. Georg, "Numerical Continuation Methods. An Introduction,", Springer Series in Computational Mathematics, 13 (1990).   Google Scholar

[3]

V. I. Arnol'd, "Mathematical Methods of Classical Mechanics," Second edition,, Graduate Texts in Mathematics, 60 (1989).   Google Scholar

[4]

J. T. Betts and S. O. Erb, Optimal low thrust trajectories to the moon,, SIAM J. Appl. Dyn. Syst., 2 (2003), 144.  doi: 10.1137/S1111111102409080.  Google Scholar

[5]

C. Bischof, A. Carle, P. Kladem and A. Mauer, Adifor 2.0: Automatic Differentiation of Fortran 77 programs,, IEEE Computational Science and Engineering, 3 (1996), 18.  doi: 10.1109/99.537089.  Google Scholar

[6]

G. A. Bliss, "Lectures on the Calculus of Variations,", University of Chicago Press, (1946).   Google Scholar

[7]

A. Bombrun, J. Chetboun and J.-B. Pomet, Transfert Terre-Lune en poussée faible par contrôle feedback - La mission SMART-1, (French), INRIA Research Report, 5955 (2006), 1.   Google Scholar

[8]

B. Bonnard, J.-B. Caillau and G. Picot, Geometric and numerical techniques in optimal control of the two and three-body problems,, Commun. Inf. Syst., 10 (2010), 239.   Google Scholar

[9]

B. Bonnard, J.-B. Caillau and E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control,, ESAIM Control Optim. and Calc. Var., 13 (2007), 207.   Google Scholar

[10]

B. Bonnard, J.-B. Caillau and E. Trélat, COTCOT: Short reference manual,, ENSEEIHT-IRIT Technical Report RT/APO/05/1, (2005), 1.   Google Scholar

[11]

B. Bonnard and M. Chyba, "Singular Trajectories and Their Role in Control Theory,", Math. and Applications, 40 (2003).   Google Scholar

[12]

B. Bonnard, L. Faubourg and E. Trélat, "Mécanique Céleste et Contôle des Véhicules Spatiaux,", Mathématiques & Applications (Berlin), 51 (2006).   Google Scholar

[13]

B. Bonnard and I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, (French)[Theory of the singularities of the input/output mapping and optimality of singular trajectories in the minimal-time problem],, Forum Math., 5 (1993), 111.  doi: 10.1515/form.1993.5.111.  Google Scholar

[14]

B. Bonnard, N. Shcherbakova and D. Sugny, The smooth continuation method in optimal control with an application to quantum systems,, ESAIM Control Optim. and Calc. Var., 17 (2011), 267.  doi: 10.1051/cocv/2010004.  Google Scholar

[15]

J.-B. Caillau, "Contribution à l'Etude du Contrôle en Temps Minimal des Transferts Orbitaux,", Ph.D thesis, (2000).   Google Scholar

[16]

J.-B. Caillau, B. Daoud and J. Gergaud, On some Riemannian aspects of two and three-body controlled problems,, in, (2010), 205.   Google Scholar

[17]

J.-B. Caillau, B. Daoud and J. Gergaud, Discrete and differential homotopy in circular restricted three-body control,, to appear in AIMS Proceedings, (2010).   Google Scholar

[18]

J. Gergaud and T. Haberkorn, Homotopy method for minimum consumption orbit transfer problem,, ESAIM Control Optim. Calc. Var., 12 (2006), 294.  doi: 10.1051/cocv:2006003.  Google Scholar

[19]

G. Gómez, S. Koon, M. Lo, J. E. Marsden, J. Masdemont and S. D. Ross, Invariant manifolds, the spatial three-body problem ans space mission design,, in, (2001).   Google Scholar

[20]

M. Guerra and A. Sarychev, Existence and Lipschitzian regularity for relaxed minimizers,, in, (2008), 231.   Google Scholar

[21]

J. E. Marsden and S. D. Ross, New methods in celestial mechanics and mission design,, Bull. Amer. Math. Soc. (N.S), 43 (2006), 43.   Google Scholar

[22]

K. Meyer and G. R. Hall, "Introduction to Hamiltonian Dynamical Systems and the $N$-Body Problem,", Applied Mathematical Sciences, 90 (1992).   Google Scholar

[23]

H. Poincaré, "Oeuvres,", Gauthier-Villars, (1934).   Google Scholar

[24]

H. Pollard, "Mathematical Introduction to Celestial Mechanics,", Prentice-Hall, (1966).   Google Scholar

[25]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Interscience Publishers John Wiley & Sons, (1962).   Google Scholar

[26]

G. Racca, B. H. Foing and M. Coradini, SMART-1: The first time of Europe to the moon,, Earth, 85-86 (2001), 85.   Google Scholar

[27]

G. Racca, et al., SMART-1 mission description and development status,, Planetary and Space Science, 50 (2002), 1323.   Google Scholar

[28]

A. V. Saryčev, Index of second variation of a control system,, Mat. Sb. (N.S.), 113(155) (1980), 464.   Google Scholar

[29]

L. F. Shampine, H. A. Watts and S. Davenport, Solving non-stiff ordinary differential equations-the state of the art,, SIAM Rev., 18 (1976), 376.   Google Scholar

[30]

V. Szebehely, "Theory of Orbits: The Restricted Problem of Three Bodies,", Academic Press, (1967).   Google Scholar

show all references

References:
[1]

A. A. Agrachev and A. V. Sarychev, On abnormals extremals for Lagrange variational problems,, J. Math. Systems Estim. Control, 8 (1998), 87.   Google Scholar

[2]

E. L Allgower and K. Georg, "Numerical Continuation Methods. An Introduction,", Springer Series in Computational Mathematics, 13 (1990).   Google Scholar

[3]

V. I. Arnol'd, "Mathematical Methods of Classical Mechanics," Second edition,, Graduate Texts in Mathematics, 60 (1989).   Google Scholar

[4]

J. T. Betts and S. O. Erb, Optimal low thrust trajectories to the moon,, SIAM J. Appl. Dyn. Syst., 2 (2003), 144.  doi: 10.1137/S1111111102409080.  Google Scholar

[5]

C. Bischof, A. Carle, P. Kladem and A. Mauer, Adifor 2.0: Automatic Differentiation of Fortran 77 programs,, IEEE Computational Science and Engineering, 3 (1996), 18.  doi: 10.1109/99.537089.  Google Scholar

[6]

G. A. Bliss, "Lectures on the Calculus of Variations,", University of Chicago Press, (1946).   Google Scholar

[7]

A. Bombrun, J. Chetboun and J.-B. Pomet, Transfert Terre-Lune en poussée faible par contrôle feedback - La mission SMART-1, (French), INRIA Research Report, 5955 (2006), 1.   Google Scholar

[8]

B. Bonnard, J.-B. Caillau and G. Picot, Geometric and numerical techniques in optimal control of the two and three-body problems,, Commun. Inf. Syst., 10 (2010), 239.   Google Scholar

[9]

B. Bonnard, J.-B. Caillau and E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control,, ESAIM Control Optim. and Calc. Var., 13 (2007), 207.   Google Scholar

[10]

B. Bonnard, J.-B. Caillau and E. Trélat, COTCOT: Short reference manual,, ENSEEIHT-IRIT Technical Report RT/APO/05/1, (2005), 1.   Google Scholar

[11]

B. Bonnard and M. Chyba, "Singular Trajectories and Their Role in Control Theory,", Math. and Applications, 40 (2003).   Google Scholar

[12]

B. Bonnard, L. Faubourg and E. Trélat, "Mécanique Céleste et Contôle des Véhicules Spatiaux,", Mathématiques & Applications (Berlin), 51 (2006).   Google Scholar

[13]

B. Bonnard and I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, (French)[Theory of the singularities of the input/output mapping and optimality of singular trajectories in the minimal-time problem],, Forum Math., 5 (1993), 111.  doi: 10.1515/form.1993.5.111.  Google Scholar

[14]

B. Bonnard, N. Shcherbakova and D. Sugny, The smooth continuation method in optimal control with an application to quantum systems,, ESAIM Control Optim. and Calc. Var., 17 (2011), 267.  doi: 10.1051/cocv/2010004.  Google Scholar

[15]

J.-B. Caillau, "Contribution à l'Etude du Contrôle en Temps Minimal des Transferts Orbitaux,", Ph.D thesis, (2000).   Google Scholar

[16]

J.-B. Caillau, B. Daoud and J. Gergaud, On some Riemannian aspects of two and three-body controlled problems,, in, (2010), 205.   Google Scholar

[17]

J.-B. Caillau, B. Daoud and J. Gergaud, Discrete and differential homotopy in circular restricted three-body control,, to appear in AIMS Proceedings, (2010).   Google Scholar

[18]

J. Gergaud and T. Haberkorn, Homotopy method for minimum consumption orbit transfer problem,, ESAIM Control Optim. Calc. Var., 12 (2006), 294.  doi: 10.1051/cocv:2006003.  Google Scholar

[19]

G. Gómez, S. Koon, M. Lo, J. E. Marsden, J. Masdemont and S. D. Ross, Invariant manifolds, the spatial three-body problem ans space mission design,, in, (2001).   Google Scholar

[20]

M. Guerra and A. Sarychev, Existence and Lipschitzian regularity for relaxed minimizers,, in, (2008), 231.   Google Scholar

[21]

J. E. Marsden and S. D. Ross, New methods in celestial mechanics and mission design,, Bull. Amer. Math. Soc. (N.S), 43 (2006), 43.   Google Scholar

[22]

K. Meyer and G. R. Hall, "Introduction to Hamiltonian Dynamical Systems and the $N$-Body Problem,", Applied Mathematical Sciences, 90 (1992).   Google Scholar

[23]

H. Poincaré, "Oeuvres,", Gauthier-Villars, (1934).   Google Scholar

[24]

H. Pollard, "Mathematical Introduction to Celestial Mechanics,", Prentice-Hall, (1966).   Google Scholar

[25]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Interscience Publishers John Wiley & Sons, (1962).   Google Scholar

[26]

G. Racca, B. H. Foing and M. Coradini, SMART-1: The first time of Europe to the moon,, Earth, 85-86 (2001), 85.   Google Scholar

[27]

G. Racca, et al., SMART-1 mission description and development status,, Planetary and Space Science, 50 (2002), 1323.   Google Scholar

[28]

A. V. Saryčev, Index of second variation of a control system,, Mat. Sb. (N.S.), 113(155) (1980), 464.   Google Scholar

[29]

L. F. Shampine, H. A. Watts and S. Davenport, Solving non-stiff ordinary differential equations-the state of the art,, SIAM Rev., 18 (1976), 376.   Google Scholar

[30]

V. Szebehely, "Theory of Orbits: The Restricted Problem of Three Bodies,", Academic Press, (1967).   Google Scholar

[1]

Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308

[2]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[3]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[4]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[5]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[6]

Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136

[7]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[8]

Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135

[9]

Weinan E, Weiguo Gao. Orbital minimization with localization. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 249-264. doi: 10.3934/dcds.2009.23.249

[10]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[11]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281

[12]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[13]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[14]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[15]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[16]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[17]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[18]

Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021004

[19]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[20]

Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]