• Previous Article
    A simple regulatory circuit that can simultaneously generate excitability of two different mechanisms
  • DCDS-B Home
  • This Issue
  • Next Article
    On a nonlocal reaction-diffusion-advection system modeling phytoplankton growth with light and nutrients
January  2012, 17(1): 245-269. doi: 10.3934/dcdsb.2012.17.245

Shooting and numerical continuation methods for computing time-minimal and energy-minimal trajectories in the Earth-Moon system using low propulsion

1. 

Mathematics Institute, Bourgogne University, 9 avenue Savary, 21078 Dijon, France

Received  March 2010 Revised  April 2011 Published  October 2011

In this article we describe the principle of computations of optimal transfers between quasi-Keplerian orbits in the Earth-Moon system using low-propulsion. The spacecraft's motion is modelled by the equations of the control restricted 3-body problem and we base our work on previous studies concerning the orbit transfer in the two-body problem where geometric and numeric methods were developed to compute optimal solutions. Using numerical simple shooting and continuation methods connected with fundamental results from control theory, such as the Pontryagin Maxium Principle and the second order optimality conditions related to the concept of conjugate points, we compute time-minimal and energy-minimal trajectories between the geostationary initial orbit and a final circular orbit around the Moon, passing through the neighborhood of the libration point $L_1$. Our computations give simple trajectories, obtained by referring to numerical values of the SMART-1 mission.
Citation: Gautier Picot. Shooting and numerical continuation methods for computing time-minimal and energy-minimal trajectories in the Earth-Moon system using low propulsion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 245-269. doi: 10.3934/dcdsb.2012.17.245
References:
[1]

A. A. Agrachev and A. V. Sarychev, On abnormals extremals for Lagrange variational problems,, J. Math. Systems Estim. Control, 8 (1998), 87. Google Scholar

[2]

E. L Allgower and K. Georg, "Numerical Continuation Methods. An Introduction,", Springer Series in Computational Mathematics, 13 (1990). Google Scholar

[3]

V. I. Arnol'd, "Mathematical Methods of Classical Mechanics," Second edition,, Graduate Texts in Mathematics, 60 (1989). Google Scholar

[4]

J. T. Betts and S. O. Erb, Optimal low thrust trajectories to the moon,, SIAM J. Appl. Dyn. Syst., 2 (2003), 144. doi: 10.1137/S1111111102409080. Google Scholar

[5]

C. Bischof, A. Carle, P. Kladem and A. Mauer, Adifor 2.0: Automatic Differentiation of Fortran 77 programs,, IEEE Computational Science and Engineering, 3 (1996), 18. doi: 10.1109/99.537089. Google Scholar

[6]

G. A. Bliss, "Lectures on the Calculus of Variations,", University of Chicago Press, (1946). Google Scholar

[7]

A. Bombrun, J. Chetboun and J.-B. Pomet, Transfert Terre-Lune en poussée faible par contrôle feedback - La mission SMART-1, (French), INRIA Research Report, 5955 (2006), 1. Google Scholar

[8]

B. Bonnard, J.-B. Caillau and G. Picot, Geometric and numerical techniques in optimal control of the two and three-body problems,, Commun. Inf. Syst., 10 (2010), 239. Google Scholar

[9]

B. Bonnard, J.-B. Caillau and E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control,, ESAIM Control Optim. and Calc. Var., 13 (2007), 207. Google Scholar

[10]

B. Bonnard, J.-B. Caillau and E. Trélat, COTCOT: Short reference manual,, ENSEEIHT-IRIT Technical Report RT/APO/05/1, (2005), 1. Google Scholar

[11]

B. Bonnard and M. Chyba, "Singular Trajectories and Their Role in Control Theory,", Math. and Applications, 40 (2003). Google Scholar

[12]

B. Bonnard, L. Faubourg and E. Trélat, "Mécanique Céleste et Contôle des Véhicules Spatiaux,", Mathématiques & Applications (Berlin), 51 (2006). Google Scholar

[13]

B. Bonnard and I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, (French)[Theory of the singularities of the input/output mapping and optimality of singular trajectories in the minimal-time problem],, Forum Math., 5 (1993), 111. doi: 10.1515/form.1993.5.111. Google Scholar

[14]

B. Bonnard, N. Shcherbakova and D. Sugny, The smooth continuation method in optimal control with an application to quantum systems,, ESAIM Control Optim. and Calc. Var., 17 (2011), 267. doi: 10.1051/cocv/2010004. Google Scholar

[15]

J.-B. Caillau, "Contribution à l'Etude du Contrôle en Temps Minimal des Transferts Orbitaux,", Ph.D thesis, (2000). Google Scholar

[16]

J.-B. Caillau, B. Daoud and J. Gergaud, On some Riemannian aspects of two and three-body controlled problems,, in, (2010), 205. Google Scholar

[17]

J.-B. Caillau, B. Daoud and J. Gergaud, Discrete and differential homotopy in circular restricted three-body control,, to appear in AIMS Proceedings, (2010). Google Scholar

[18]

J. Gergaud and T. Haberkorn, Homotopy method for minimum consumption orbit transfer problem,, ESAIM Control Optim. Calc. Var., 12 (2006), 294. doi: 10.1051/cocv:2006003. Google Scholar

[19]

G. Gómez, S. Koon, M. Lo, J. E. Marsden, J. Masdemont and S. D. Ross, Invariant manifolds, the spatial three-body problem ans space mission design,, in, (2001). Google Scholar

[20]

M. Guerra and A. Sarychev, Existence and Lipschitzian regularity for relaxed minimizers,, in, (2008), 231. Google Scholar

[21]

J. E. Marsden and S. D. Ross, New methods in celestial mechanics and mission design,, Bull. Amer. Math. Soc. (N.S), 43 (2006), 43. Google Scholar

[22]

K. Meyer and G. R. Hall, "Introduction to Hamiltonian Dynamical Systems and the $N$-Body Problem,", Applied Mathematical Sciences, 90 (1992). Google Scholar

[23]

H. Poincaré, "Oeuvres,", Gauthier-Villars, (1934). Google Scholar

[24]

H. Pollard, "Mathematical Introduction to Celestial Mechanics,", Prentice-Hall, (1966). Google Scholar

[25]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Interscience Publishers John Wiley & Sons, (1962). Google Scholar

[26]

G. Racca, B. H. Foing and M. Coradini, SMART-1: The first time of Europe to the moon,, Earth, 85-86 (2001), 85. Google Scholar

[27]

G. Racca, et al., SMART-1 mission description and development status,, Planetary and Space Science, 50 (2002), 1323. Google Scholar

[28]

A. V. Saryčev, Index of second variation of a control system,, Mat. Sb. (N.S.), 113(155) (1980), 464. Google Scholar

[29]

L. F. Shampine, H. A. Watts and S. Davenport, Solving non-stiff ordinary differential equations-the state of the art,, SIAM Rev., 18 (1976), 376. Google Scholar

[30]

V. Szebehely, "Theory of Orbits: The Restricted Problem of Three Bodies,", Academic Press, (1967). Google Scholar

show all references

References:
[1]

A. A. Agrachev and A. V. Sarychev, On abnormals extremals for Lagrange variational problems,, J. Math. Systems Estim. Control, 8 (1998), 87. Google Scholar

[2]

E. L Allgower and K. Georg, "Numerical Continuation Methods. An Introduction,", Springer Series in Computational Mathematics, 13 (1990). Google Scholar

[3]

V. I. Arnol'd, "Mathematical Methods of Classical Mechanics," Second edition,, Graduate Texts in Mathematics, 60 (1989). Google Scholar

[4]

J. T. Betts and S. O. Erb, Optimal low thrust trajectories to the moon,, SIAM J. Appl. Dyn. Syst., 2 (2003), 144. doi: 10.1137/S1111111102409080. Google Scholar

[5]

C. Bischof, A. Carle, P. Kladem and A. Mauer, Adifor 2.0: Automatic Differentiation of Fortran 77 programs,, IEEE Computational Science and Engineering, 3 (1996), 18. doi: 10.1109/99.537089. Google Scholar

[6]

G. A. Bliss, "Lectures on the Calculus of Variations,", University of Chicago Press, (1946). Google Scholar

[7]

A. Bombrun, J. Chetboun and J.-B. Pomet, Transfert Terre-Lune en poussée faible par contrôle feedback - La mission SMART-1, (French), INRIA Research Report, 5955 (2006), 1. Google Scholar

[8]

B. Bonnard, J.-B. Caillau and G. Picot, Geometric and numerical techniques in optimal control of the two and three-body problems,, Commun. Inf. Syst., 10 (2010), 239. Google Scholar

[9]

B. Bonnard, J.-B. Caillau and E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control,, ESAIM Control Optim. and Calc. Var., 13 (2007), 207. Google Scholar

[10]

B. Bonnard, J.-B. Caillau and E. Trélat, COTCOT: Short reference manual,, ENSEEIHT-IRIT Technical Report RT/APO/05/1, (2005), 1. Google Scholar

[11]

B. Bonnard and M. Chyba, "Singular Trajectories and Their Role in Control Theory,", Math. and Applications, 40 (2003). Google Scholar

[12]

B. Bonnard, L. Faubourg and E. Trélat, "Mécanique Céleste et Contôle des Véhicules Spatiaux,", Mathématiques & Applications (Berlin), 51 (2006). Google Scholar

[13]

B. Bonnard and I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, (French)[Theory of the singularities of the input/output mapping and optimality of singular trajectories in the minimal-time problem],, Forum Math., 5 (1993), 111. doi: 10.1515/form.1993.5.111. Google Scholar

[14]

B. Bonnard, N. Shcherbakova and D. Sugny, The smooth continuation method in optimal control with an application to quantum systems,, ESAIM Control Optim. and Calc. Var., 17 (2011), 267. doi: 10.1051/cocv/2010004. Google Scholar

[15]

J.-B. Caillau, "Contribution à l'Etude du Contrôle en Temps Minimal des Transferts Orbitaux,", Ph.D thesis, (2000). Google Scholar

[16]

J.-B. Caillau, B. Daoud and J. Gergaud, On some Riemannian aspects of two and three-body controlled problems,, in, (2010), 205. Google Scholar

[17]

J.-B. Caillau, B. Daoud and J. Gergaud, Discrete and differential homotopy in circular restricted three-body control,, to appear in AIMS Proceedings, (2010). Google Scholar

[18]

J. Gergaud and T. Haberkorn, Homotopy method for minimum consumption orbit transfer problem,, ESAIM Control Optim. Calc. Var., 12 (2006), 294. doi: 10.1051/cocv:2006003. Google Scholar

[19]

G. Gómez, S. Koon, M. Lo, J. E. Marsden, J. Masdemont and S. D. Ross, Invariant manifolds, the spatial three-body problem ans space mission design,, in, (2001). Google Scholar

[20]

M. Guerra and A. Sarychev, Existence and Lipschitzian regularity for relaxed minimizers,, in, (2008), 231. Google Scholar

[21]

J. E. Marsden and S. D. Ross, New methods in celestial mechanics and mission design,, Bull. Amer. Math. Soc. (N.S), 43 (2006), 43. Google Scholar

[22]

K. Meyer and G. R. Hall, "Introduction to Hamiltonian Dynamical Systems and the $N$-Body Problem,", Applied Mathematical Sciences, 90 (1992). Google Scholar

[23]

H. Poincaré, "Oeuvres,", Gauthier-Villars, (1934). Google Scholar

[24]

H. Pollard, "Mathematical Introduction to Celestial Mechanics,", Prentice-Hall, (1966). Google Scholar

[25]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,", Interscience Publishers John Wiley & Sons, (1962). Google Scholar

[26]

G. Racca, B. H. Foing and M. Coradini, SMART-1: The first time of Europe to the moon,, Earth, 85-86 (2001), 85. Google Scholar

[27]

G. Racca, et al., SMART-1 mission description and development status,, Planetary and Space Science, 50 (2002), 1323. Google Scholar

[28]

A. V. Saryčev, Index of second variation of a control system,, Mat. Sb. (N.S.), 113(155) (1980), 464. Google Scholar

[29]

L. F. Shampine, H. A. Watts and S. Davenport, Solving non-stiff ordinary differential equations-the state of the art,, SIAM Rev., 18 (1976), 376. Google Scholar

[30]

V. Szebehely, "Theory of Orbits: The Restricted Problem of Three Bodies,", Academic Press, (1967). Google Scholar

[1]

Gianni Arioli. Branches of periodic orbits for the planar restricted 3-body problem. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 745-755. doi: 10.3934/dcds.2004.11.745

[2]

E. Canalias, Josep J. Masdemont. Homoclinic and heteroclinic transfer trajectories between planar Lyapunov orbits in the sun-earth and earth-moon systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 261-279. doi: 10.3934/dcds.2006.14.261

[3]

Giovanni F. Gronchi, Chiara Tardioli. The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1323-1344. doi: 10.3934/dcdsb.2013.18.1323

[4]

Alain Chenciner, Jacques Féjoz. The flow of the equal-mass spatial 3-body problem in the neighborhood of the equilateral relative equilibrium. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 421-438. doi: 10.3934/dcdsb.2008.10.421

[5]

M. Zuhair Nashed, Alexandru Tamasan. Structural stability in a minimization problem and applications to conductivity imaging. Inverse Problems & Imaging, 2011, 5 (1) : 219-236. doi: 10.3934/ipi.2011.5.219

[6]

Naoufel Ben Abdallah, Irene M. Gamba, Giuseppe Toscani. On the minimization problem of sub-linear convex functionals. Kinetic & Related Models, 2011, 4 (4) : 857-871. doi: 10.3934/krm.2011.4.857

[7]

Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55

[8]

Lauri Oksanen. Solving an inverse problem for the wave equation by using a minimization algorithm and time-reversed measurements. Inverse Problems & Imaging, 2011, 5 (3) : 731-744. doi: 10.3934/ipi.2011.5.731

[9]

Samuel R. Kaplan, Mark Levi, Richard Montgomery. Making the moon reverse its orbit, or, stuttering in the planar three-body problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 569-595. doi: 10.3934/dcdsb.2008.10.569

[10]

Ethel Mokotoff. Algorithms for bicriteria minimization in the permutation flow shop scheduling problem. Journal of Industrial & Management Optimization, 2011, 7 (1) : 253-282. doi: 10.3934/jimo.2011.7.253

[11]

Michael V. Klibanov, Dinh-Liem Nguyen, Loc H. Nguyen, Hui Liu. A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data. Inverse Problems & Imaging, 2018, 12 (2) : 493-523. doi: 10.3934/ipi.2018021

[12]

Martha Alvarez-Ramírez, Joaquín Delgado. Blow up of the isosceles 3--body problem with an infinitesimal mass. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1149-1173. doi: 10.3934/dcds.2003.9.1149

[13]

Samuel R. Kaplan, Ernesto A. Lacomba, Jaume Llibre. Symbolic dynamics of the elliptic rectilinear restricted 3--body problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 541-555. doi: 10.3934/dcdss.2008.1.541

[14]

Sergey V. Bolotin, Piero Negrini. Variational approach to second species periodic solutions of Poincaré of the 3 body problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1009-1032. doi: 10.3934/dcds.2013.33.1009

[15]

Elbaz I. Abouelmagd, Juan Luis García Guirao, Jaume Llibre. Periodic orbits for the perturbed planar circular restricted 3–body problem. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1007-1020. doi: 10.3934/dcdsb.2019003

[16]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[17]

Qiuli Liu, Xiaolong Zou. A risk minimization problem for finite horizon semi-Markov decision processes with loss rates. Journal of Dynamics & Games, 2018, 5 (2) : 143-163. doi: 10.3934/jdg.2018009

[18]

Ugo Boscain, Yacine Chitour. On the minimum time problem for driftless left-invariant control systems on SO(3). Communications on Pure & Applied Analysis, 2002, 1 (3) : 285-312. doi: 10.3934/cpaa.2002.1.285

[19]

Paolo Rinaldi, Heinz Schättler. Minimization of the base transit time in semiconductor devices using optimal control. Conference Publications, 2003, 2003 (Special) : 742-751. doi: 10.3934/proc.2003.2003.742

[20]

A. Doubov, Enrique Fernández-Cara, Manuel González-Burgos, J. H. Ortega. A geometric inverse problem for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1213-1238. doi: 10.3934/dcdsb.2006.6.1213

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]