\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Shooting and numerical continuation methods for computing time-minimal and energy-minimal trajectories in the Earth-Moon system using low propulsion

Abstract Related Papers Cited by
  • In this article we describe the principle of computations of optimal transfers between quasi-Keplerian orbits in the Earth-Moon system using low-propulsion. The spacecraft's motion is modelled by the equations of the control restricted 3-body problem and we base our work on previous studies concerning the orbit transfer in the two-body problem where geometric and numeric methods were developed to compute optimal solutions. Using numerical simple shooting and continuation methods connected with fundamental results from control theory, such as the Pontryagin Maxium Principle and the second order optimality conditions related to the concept of conjugate points, we compute time-minimal and energy-minimal trajectories between the geostationary initial orbit and a final circular orbit around the Moon, passing through the neighborhood of the libration point $L_1$. Our computations give simple trajectories, obtained by referring to numerical values of the SMART-1 mission.
    Mathematics Subject Classification: Primary: 49K15, 49M05; Secondary: 70F07.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. A. Agrachev and A. V. Sarychev, On abnormals extremals for Lagrange variational problems, J. Math. Systems Estim. Control, 8 (1998), 87-118.

    [2]

    E. L Allgower and K. Georg, "Numerical Continuation Methods. An Introduction," Springer Series in Computational Mathematics, 13, Springer-Verlag, Berlin, 1990.

    [3]

    V. I. Arnol'd, "Mathematical Methods of Classical Mechanics," Second edition, Graduate Texts in Mathematics, 60, Springer-Verlag, New York, 1989.

    [4]

    J. T. Betts and S. O. Erb, Optimal low thrust trajectories to the moon, SIAM J. Appl. Dyn. Syst., 2 (2003), 144-170.doi: 10.1137/S1111111102409080.

    [5]

    C. Bischof, A. Carle, P. Kladem and A. Mauer, Adifor 2.0: Automatic Differentiation of Fortran 77 programs, IEEE Computational Science and Engineering, 3 (1996), 18-32.doi: 10.1109/99.537089.

    [6]

    G. A. Bliss, "Lectures on the Calculus of Variations," University of Chicago Press, Chicago, Ill., 1946.

    [7]

    A. Bombrun, J. Chetboun and J.-B. Pomet, Transfert Terre-Lune en poussée faible par contrôle feedback - La mission SMART-1, (French) INRIA Research Report, 5955 (2006), 1-27.

    [8]

    B. Bonnard, J.-B. Caillau and G. Picot, Geometric and numerical techniques in optimal control of the two and three-body problems, Commun. Inf. Syst., 10 (2010), 239-278.

    [9]

    B. Bonnard, J.-B. Caillau and E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control, ESAIM Control Optim. and Calc. Var., 13 (2007), 207-236.

    [10]

    B. Bonnard, J.-B. Caillau and E. Trélat, COTCOT: Short reference manual, ENSEEIHT-IRIT Technical Report RT/APO/05/1, (2005), 1-15.

    [11]

    B. Bonnard and M. Chyba, "Singular Trajectories and Their Role in Control Theory," Math. and Applications, 40, Springer-Verlag, Berlin, 2003.

    [12]

    B. Bonnard, L. Faubourg and E. Trélat, "Mécanique Céleste et Contôle des Véhicules Spatiaux," Mathématiques & Applications (Berlin), 51, Springer-Verlag, Berlin, 2006.

    [13]

    B. Bonnard and I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, (French)[Theory of the singularities of the input/output mapping and optimality of singular trajectories in the minimal-time problem], Forum Math., 5 (1993), 111-159.doi: 10.1515/form.1993.5.111.

    [14]

    B. Bonnard, N. Shcherbakova and D. Sugny, The smooth continuation method in optimal control with an application to quantum systems, ESAIM Control Optim. and Calc. Var., 17 (2011), 267-292.doi: 10.1051/cocv/2010004.

    [15]

    J.-B. Caillau, "Contribution à l'Etude du Contrôle en Temps Minimal des Transferts Orbitaux," Ph.D thesis, Toulouse University, 2000.

    [16]

    J.-B. Caillau, B. Daoud and J. Gergaud, On some Riemannian aspects of two and three-body controlled problems, in "Recent Advances in Optimization and its Applications in Engineering," Springer, (2010), 205-224.

    [17]

    J.-B. Caillau, B. Daoud and J. Gergaud, Discrete and differential homotopy in circular restricted three-body control, to appear in AIMS Proceedings, 2010.

    [18]

    J. Gergaud and T. Haberkorn, Homotopy method for minimum consumption orbit transfer problem, ESAIM Control Optim. Calc. Var., 12 (2006), 294-310.doi: 10.1051/cocv:2006003.

    [19]

    G. Gómez, S. Koon, M. Lo, J. E. Marsden, J. Masdemont and S. D. Ross, Invariant manifolds, the spatial three-body problem ans space mission design, in "The Proceedings of AIAA/AAS Astrodynamics Specialist Meeting," Quebec City, Quebec, Canada, 2001.

    [20]

    M. Guerra and A. Sarychev, Existence and Lipschitzian regularity for relaxed minimizers, in "Mathematical Control Theory and Finance," Springer, Berlin, (2008), 231-250.

    [21]

    J. E. Marsden and S. D. Ross, New methods in celestial mechanics and mission design, Bull. Amer. Math. Soc. (N.S), 43 (2006), 43-73.

    [22]

    K. Meyer and G. R. Hall, "Introduction to Hamiltonian Dynamical Systems and the $N$-Body Problem," Applied Mathematical Sciences, 90, Springer-Verlag, New York, 1992.

    [23]

    H. Poincaré, "Oeuvres," Gauthier-Villars, Paris, 1934.

    [24]

    H. Pollard, "Mathematical Introduction to Celestial Mechanics," Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966.

    [25]

    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes," Interscience Publishers John Wiley & Sons, Inc., New York-London, 1962.

    [26]

    G. Racca, B. H. Foing and M. Coradini, SMART-1: The first time of Europe to the moon, Earth, Moon and Planets, 85-86 (2001), 379-390.

    [27]

    G. Racca, et al., SMART-1 mission description and development status, Planetary and Space Science, 50 (2002), 1323-1337.

    [28]

    A. V. Saryčev, Index of second variation of a control system, Mat. Sb. (N.S.), 113(155) (1980), 464-486, 496.

    [29]

    L. F. Shampine, H. A. Watts and S. Davenport, Solving non-stiff ordinary differential equations-the state of the art, SIAM Rev., 18 (1976), 376-411.

    [30]

    V. Szebehely, "Theory of Orbits: The Restricted Problem of Three Bodies," Academic Press, 1967.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(113) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return