• Previous Article
    Nonlinear conformation response in the finite channel: Existence of a unique solution for the dynamic PNP model
  • DCDS-B Home
  • This Issue
  • Next Article
    Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition
October  2012, 17(7): 2451-2464. doi: 10.3934/dcdsb.2012.17.2451

Stability conditions for a class of delay differential equations in single species population dynamics

1. 

School of Mathematics and Physics, China University of Geosciences, Wuhan, 430074

2. 

College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 2525258, Japan

3. 

Department of Systems Engineering, Shizuoka University, Hamamatsu, 4328561, Japan

Received  January 2011 Revised  February 2012 Published  July 2012

We consider a class of nonlinear delay differential equations,which describes single species population growth with stage structure. By constructing appropriate Lyapunov functionals, the global asymptotic stability criteria, which are independent of delay, are established. Much sharper stability conditions than known results are provided. Applications of the results to some population models show the effectiveness of the methods described in the paper.
Citation: Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451
References:
[1]

W. Aiello and H. I. Freedman, A time-delay model of single-species growth with stage structure,, Math. Biosci., 101 (1990), 139.   Google Scholar

[2]

W. Aiello, H. I. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay,, SIAM J. Appl. Math., 52 (1992), 855.   Google Scholar

[3]

J. Arino, L. Wang and G. S. K. Wolkowicz, An alternative formulation for a delayed logistic equation,, J. Theore. Biol., 241 (2006), 109.   Google Scholar

[4]

J. R. Beddington and R. M. May, Time delays are not necessarily destabilizing,, Math. Biosci., 27 (1975), 109.   Google Scholar

[5]

S. Bernard, J. Bélair and M. C. Mackey, Sufficient conditions for stability of linear differential equations with distributed delay,, Disc. Cont. Dyn. Syst. Ser. B, 1 (2001), 233.   Google Scholar

[6]

S. P. Blythe, R. M. Nisbet and W. S. C. Gurney, Instability and complex dynamic behavior in population models with long time delays,, Theor. Pop. Biol., 22 (1982), 147.   Google Scholar

[7]

M. Bodnar and U. Foryś, Three types of simple DDE's describing tumor growth,, J. Biol. Systems, 15 (2007), 1.   Google Scholar

[8]

M. Bodnar and U. Foryś, Global stability and Hopf bifurcation for a gerneral class of delay differential equations,, Math. Mathods Appl. Sci., 31 (2008), 1197.  doi: 10.1002/mma.965.  Google Scholar

[9]

F. Brauer and Z. Ma, Stability of stage-structured population models,, J. Math. Anal. Appl., 126 (1987), 301.   Google Scholar

[10]

F. Brauer and C. Castillo-Chávez, "Mathematical Models in Population Biology and Epidemiology,", Texts in Applied Mathematics, 40 (2001).   Google Scholar

[11]

T. A. Burton and G. Makey, Asymptotic stability for functional differential equations,, J. Math. Anal. Appl., 126 (1994), 301.   Google Scholar

[12]

T. A. Burton and G. Makey, Marachkov type stability results for functional-differential equations,, E. J. Qualitative Theory of Diff. Equ., (1998).   Google Scholar

[13]

K. Cooke, P. van den Driessche and X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models,, J. Math. Biol., 39 (1999), 332.   Google Scholar

[14]

F. Crauste, Stability and Hopf bifurcation for a first-order delay differential equation with distributed delay,, in, (2010), 263.   Google Scholar

[15]

J. M. Cushing, Time delays in single growth models,, J. Math. Biol., 4 (1977), 257.   Google Scholar

[16]

H. I. Freedman and K. Gopalsamy, Global stability in time-delayed single-species dynamics,, Bull. Math. Biol., 48 (1986), 485.   Google Scholar

[17]

U. Foryś, Global stability for a class of delay differential equations,, Appl. Math. Lett., 17 (2004), 581.   Google Scholar

[18]

K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics,", Mathematics and its Applications, 74 (1992).   Google Scholar

[19]

J. R. Haddock and J. Terjéki, Liapunov-Razumikhin functions and an invariance principle for functional-differential equations,, J. Diff. Equat., 48 (1983), 95.   Google Scholar

[20]

J. K. Hale, "Theory of Functional Differential Equations,", Second editon, (1977).   Google Scholar

[21]

L. Hatvani, Asymptotic stability conditions for a linear nonautonomous delay differential equation,, in, (1996), 181.   Google Scholar

[22]

N. D. Hayes, Roots of the transcendental equation associated with a certain difference-differential equation,, J. London Math. Society, 25 (1950), 226.   Google Scholar

[23]

G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global Stability for delay SIR and SEIR epidemic models with nonlinear incidence rate,, Bull. Math. Biol., 72 (2010), 1192.   Google Scholar

[24]

G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model for viral infections,, SIAM J. Appl. Math., 70 (2010), 2693.   Google Scholar

[25]

G. Karakostas, Ch. G. Philos and Y. G. Sficas, Stable steady state of some population models,, J. Dynam. Differential Equations, 4 (1992), 161.   Google Scholar

[26]

I. Kubiaczyk and S. H. Saker, Oscillation and stability in nonlinear delay differntial equations of population dynamics,, Math. Comput. Model., 35 (2002), 295.   Google Scholar

[27]

Y. Kuang, Global attractivity in delay defferential equations related to models of physiology and population biology,, Japan J. Indust. Appl. Math., 9 (1992), 205.   Google Scholar

[28]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Mathematics in Science and Engineering, 191 (1993).   Google Scholar

[29]

S. M. Lenhart and C. C. Travis, Global stability of a biological model with time delay,, Proc. Amer. Math. Soc., 96 (1986), 75.   Google Scholar

[30]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Science, 197 (1977), 287.   Google Scholar

[31]

A. J. Nicholson, An outline of the dynamics of animal populations,, Austral. J. Zoo., 2 (1954), 9.   Google Scholar

[32]

S. Ruan, Delay differential equations in single species dynamics,, in, 205 (2006), 477.   Google Scholar

[33]

G. Röst and J. Wu, Domain-decomposition method for the global dynamics of delay differential equations with unimodal feedback,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 2655.   Google Scholar

[34]

H. Smith, "An Introduction to Delay Differential Equations with Applications to the Life Sciences,", Texts in Applied Mathematics, 57 (2011).   Google Scholar

[35]

C. E. Taylor and R. R. Sokal, Oscillations in housefly population sizes due to time lags,, Ecology, 57 (1976), 1060.   Google Scholar

[36]

H.-O. Walther, The 2-dimensional attractor of $x'(t)=-\mu x(t)+f(x(t-1))$,, Mem. Am. Math. Soc., 113 (1995).   Google Scholar

show all references

References:
[1]

W. Aiello and H. I. Freedman, A time-delay model of single-species growth with stage structure,, Math. Biosci., 101 (1990), 139.   Google Scholar

[2]

W. Aiello, H. I. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay,, SIAM J. Appl. Math., 52 (1992), 855.   Google Scholar

[3]

J. Arino, L. Wang and G. S. K. Wolkowicz, An alternative formulation for a delayed logistic equation,, J. Theore. Biol., 241 (2006), 109.   Google Scholar

[4]

J. R. Beddington and R. M. May, Time delays are not necessarily destabilizing,, Math. Biosci., 27 (1975), 109.   Google Scholar

[5]

S. Bernard, J. Bélair and M. C. Mackey, Sufficient conditions for stability of linear differential equations with distributed delay,, Disc. Cont. Dyn. Syst. Ser. B, 1 (2001), 233.   Google Scholar

[6]

S. P. Blythe, R. M. Nisbet and W. S. C. Gurney, Instability and complex dynamic behavior in population models with long time delays,, Theor. Pop. Biol., 22 (1982), 147.   Google Scholar

[7]

M. Bodnar and U. Foryś, Three types of simple DDE's describing tumor growth,, J. Biol. Systems, 15 (2007), 1.   Google Scholar

[8]

M. Bodnar and U. Foryś, Global stability and Hopf bifurcation for a gerneral class of delay differential equations,, Math. Mathods Appl. Sci., 31 (2008), 1197.  doi: 10.1002/mma.965.  Google Scholar

[9]

F. Brauer and Z. Ma, Stability of stage-structured population models,, J. Math. Anal. Appl., 126 (1987), 301.   Google Scholar

[10]

F. Brauer and C. Castillo-Chávez, "Mathematical Models in Population Biology and Epidemiology,", Texts in Applied Mathematics, 40 (2001).   Google Scholar

[11]

T. A. Burton and G. Makey, Asymptotic stability for functional differential equations,, J. Math. Anal. Appl., 126 (1994), 301.   Google Scholar

[12]

T. A. Burton and G. Makey, Marachkov type stability results for functional-differential equations,, E. J. Qualitative Theory of Diff. Equ., (1998).   Google Scholar

[13]

K. Cooke, P. van den Driessche and X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models,, J. Math. Biol., 39 (1999), 332.   Google Scholar

[14]

F. Crauste, Stability and Hopf bifurcation for a first-order delay differential equation with distributed delay,, in, (2010), 263.   Google Scholar

[15]

J. M. Cushing, Time delays in single growth models,, J. Math. Biol., 4 (1977), 257.   Google Scholar

[16]

H. I. Freedman and K. Gopalsamy, Global stability in time-delayed single-species dynamics,, Bull. Math. Biol., 48 (1986), 485.   Google Scholar

[17]

U. Foryś, Global stability for a class of delay differential equations,, Appl. Math. Lett., 17 (2004), 581.   Google Scholar

[18]

K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics,", Mathematics and its Applications, 74 (1992).   Google Scholar

[19]

J. R. Haddock and J. Terjéki, Liapunov-Razumikhin functions and an invariance principle for functional-differential equations,, J. Diff. Equat., 48 (1983), 95.   Google Scholar

[20]

J. K. Hale, "Theory of Functional Differential Equations,", Second editon, (1977).   Google Scholar

[21]

L. Hatvani, Asymptotic stability conditions for a linear nonautonomous delay differential equation,, in, (1996), 181.   Google Scholar

[22]

N. D. Hayes, Roots of the transcendental equation associated with a certain difference-differential equation,, J. London Math. Society, 25 (1950), 226.   Google Scholar

[23]

G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global Stability for delay SIR and SEIR epidemic models with nonlinear incidence rate,, Bull. Math. Biol., 72 (2010), 1192.   Google Scholar

[24]

G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model for viral infections,, SIAM J. Appl. Math., 70 (2010), 2693.   Google Scholar

[25]

G. Karakostas, Ch. G. Philos and Y. G. Sficas, Stable steady state of some population models,, J. Dynam. Differential Equations, 4 (1992), 161.   Google Scholar

[26]

I. Kubiaczyk and S. H. Saker, Oscillation and stability in nonlinear delay differntial equations of population dynamics,, Math. Comput. Model., 35 (2002), 295.   Google Scholar

[27]

Y. Kuang, Global attractivity in delay defferential equations related to models of physiology and population biology,, Japan J. Indust. Appl. Math., 9 (1992), 205.   Google Scholar

[28]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Mathematics in Science and Engineering, 191 (1993).   Google Scholar

[29]

S. M. Lenhart and C. C. Travis, Global stability of a biological model with time delay,, Proc. Amer. Math. Soc., 96 (1986), 75.   Google Scholar

[30]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Science, 197 (1977), 287.   Google Scholar

[31]

A. J. Nicholson, An outline of the dynamics of animal populations,, Austral. J. Zoo., 2 (1954), 9.   Google Scholar

[32]

S. Ruan, Delay differential equations in single species dynamics,, in, 205 (2006), 477.   Google Scholar

[33]

G. Röst and J. Wu, Domain-decomposition method for the global dynamics of delay differential equations with unimodal feedback,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 2655.   Google Scholar

[34]

H. Smith, "An Introduction to Delay Differential Equations with Applications to the Life Sciences,", Texts in Applied Mathematics, 57 (2011).   Google Scholar

[35]

C. E. Taylor and R. R. Sokal, Oscillations in housefly population sizes due to time lags,, Ecology, 57 (1976), 1060.   Google Scholar

[36]

H.-O. Walther, The 2-dimensional attractor of $x'(t)=-\mu x(t)+f(x(t-1))$,, Mem. Am. Math. Soc., 113 (1995).   Google Scholar

[1]

Elena Trofimchuk, Sergei Trofimchuk. Admissible wavefront speeds for a single species reaction-diffusion equation with delay. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 407-423. doi: 10.3934/dcds.2008.20.407

[2]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[3]

Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki. Lyapunov functionals for multistrain models with infinite delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 507-536. doi: 10.3934/dcdsb.2017025

[4]

Eduardo Liz. Local stability implies global stability in some one-dimensional discrete single-species models. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 191-199. doi: 10.3934/dcdsb.2007.7.191

[5]

Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki. Lyapunov functionals for virus-immune models with infinite delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3093-3114. doi: 10.3934/dcdsb.2015.20.3093

[6]

Junya Nishiguchi. On parameter dependence of exponential stability of equilibrium solutions in differential equations with a single constant delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5657-5679. doi: 10.3934/dcds.2016048

[7]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[8]

Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101

[9]

Marc Briant. Stability of global equilibrium for the multi-species Boltzmann equation in $L^\infty$ settings. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6669-6688. doi: 10.3934/dcds.2016090

[10]

Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1977-1986. doi: 10.3934/dcdsb.2017116

[11]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[12]

Dimitri Breda, Sara Della Schiava. Pseudospectral reduction to compute Lyapunov exponents of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2727-2741. doi: 10.3934/dcdsb.2018092

[13]

Eugen Stumpf. On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3317-3340. doi: 10.3934/dcdsb.2017139

[14]

Guillaume Bal, Olivier Pinaud, Lenya Ryzhik. On the stability of some imaging functionals. Inverse Problems & Imaging, 2016, 10 (3) : 585-616. doi: 10.3934/ipi.2016013

[15]

Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361

[16]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[17]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[18]

Huanhuan Qiu, Shangjiang Guo. Global existence and stability in a two-species chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1569-1587. doi: 10.3934/dcdsb.2018220

[19]

Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971

[20]

Cyrine Fitouri, Alain Haraux. Boundedness and stability for the damped and forced single well Duffing equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 211-223. doi: 10.3934/dcds.2013.33.211

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]