October  2012, 17(7): 2465-2482. doi: 10.3934/dcdsb.2012.17.2465

Nonlinear conformation response in the finite channel: Existence of a unique solution for the dynamic PNP model

1. 

Department of Mathematics, Northwestern University, Evanston, IL 60208-2730, United States

Received  September 2011 Revised  February 2012 Published  July 2012

The standard PNP model for ion transport in channels in cell membranes has been widely studied during the previous two decades; there is a substantial literature for both the dynamic and steady models. What is currently lacking is a generally accepted gating model, which is linked to the observed conformation changes on the protein molecule. In [SIAM J. Appl. Math. 61 (2000), no.3, 792–802], C.W. Gardner, the author, and R.S. Eisen- berg suggested a model for the net charge density in the infinite channel, which has connections to stochastic dynamical systems, and which predicted rectan- gular current pulses. The finite channel was analyzed by these authors in [J. Theoret. Biol. 219 (2002), no. 3, 291–299]. The finite channel cannot, in general, be analyzed by a traveling wave approach. In this paper, a rigorous study of the initial-boundary value problem is carried out for the deterministic version of the finite channel; an existence/uniqueness result, with a weak maximum principle, is derived on the space-time domain under assumptions on the inital and boundary data which confine the channel to certain states. Significant open problems remain and are discussed
Citation: Joseph W. Jerome. Nonlinear conformation response in the finite channel: Existence of a unique solution for the dynamic PNP model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2465-2482. doi: 10.3934/dcdsb.2012.17.2465
References:
[1]

F. Alabau, On the existence of multiple steady-state solutions in the theory of electrodiffusion. I: The nonelectroneutral case. II: A constructive method for the electroneutral case,, Trans. Amer. Math. Soc., 350 (1998), 4709.   Google Scholar

[2]

J.-P. Aubin, Un théorème de compacité,, C. R. Acad. Sci. Paris, 256 (1963), 5042.   Google Scholar

[3]

V. Barcilon, D.-P. Chen, J. W. Jerome and R. S. Eisenberg, Qualitative properties of solutions of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation study,, SIAM J. Appl. Math., 57 (1997), 631.   Google Scholar

[4]

R. S. Eisenberg, M. M. Klosek and Z. Schuss, Diffusion as a chemical reaction: Stochastic trajectories between fixed concentrations,, J. Chemical Physics, 102 (1995), 1767.  doi: 10.1063/1.468704.  Google Scholar

[5]

B. Fiedler, S. Liebscher and J. C. Alexander, General Hopf bifurcation from lines of equilibria without parameters. I. Theory,, J. Differential Equations, 167 (2000), 16.   Google Scholar

[6]

B. Fiedler, S. Liebscher and J. C. Alexander, Generic Hopf bifurcation from lines of equilibria without parameters. III. Binary oscillations,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 1613.   Google Scholar

[7]

C. L. Gardner, private communication,, December, (2011).   Google Scholar

[8]

C. L. Gardner, J. W. Jerome and R. S. Eisenberg, Electrodiffusion model of rectangular current pulses in ionic channels of cellular membranes,, SIAM J. Appl. Math., 61 (2000), 792.   Google Scholar

[9]

C. L. Gardner, J. W. Jerome and R. S. Eisenberg, Electrodiffusion model simulation of rectangular current pulses ina voltage-biased biological channel,, J. Theoret. Biol., 219 (2002), 291.   Google Scholar

[10]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,'', Reprint of the 1998 edition, (1998).   Google Scholar

[11]

I. Halperin, "Introduction to the Theory of Distributions. Based on the Lectures Given by Laurent Schwartz,'', University ofToronto Press, (1952).   Google Scholar

[12]

B. Hille, "Ionic Channels of Excitable Membranes,'', Second edition, (1992).   Google Scholar

[13]

J. W. Jerome, "Approximation of Nonlinear Evolution Systems,'', Mathematics in Science and Engineering, 164 (1983).   Google Scholar

[14]

J. W. Jerome, Consistency of semiconductor modeling: An existence/stability analysis for the stationary Van Roosbroeck system,, SIAM J. Appl. Math., 45 (1985), 565.   Google Scholar

[15]

J. W. Jerome, Evolution systems in semiconductor device modeling: A cyclic uncoupled line analysis for the Gummel map,, Math. Methods Appl. Sci., 9 (1987), 455.   Google Scholar

[16]

J. W. Jerome, A trapping principle and convergence results for finite element approximate solutions of steady reaction/diffusion systems,, Numer. Math., 109 (2008), 121.   Google Scholar

[17]

M. Krupa, Robust heteroclinic cycles,, J. Nonlinear Sci., 7 (1997), 129.   Google Scholar

[18]

W. Liu and B. Wang, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels,, J. Dynam. Differential Equations, 22 (2010), 413.   Google Scholar

[19]

E. Neher and B. Sackmann, Single-channel currents recorded from membrane of denervated frog muscle-fibers,, Nature, 260 (1976), 799.   Google Scholar

[20]

H. L. Royden, "Real Analysis,'', Third edition, (1988).   Google Scholar

[21]

T. Seidman and G. M. Troianiello, Time-dependent solutions of a nonlinear system arising in semiconductor theory,, Nonlinear Analysis, 9 (1985), 1137.   Google Scholar

[22]

Z. S. Siwy, M. R. Powell, A. Petrov, E. Kalman, C. Trautmann and R. S. Eisenberg, Calcium induced voltage gating in single conical nanopores,, Nano Letters, 6 (2006), 1729.   Google Scholar

[23]

E. Stone and P. Holmes, Random perturbations of heteroclinic attractors,, SIAM J. Appl. Math., 50 (1990), 726.   Google Scholar

[24]

P. Szmolyan, Traveling waves in GaAs-semiconductors,, Physica D, 39 (1989), 393.   Google Scholar

show all references

References:
[1]

F. Alabau, On the existence of multiple steady-state solutions in the theory of electrodiffusion. I: The nonelectroneutral case. II: A constructive method for the electroneutral case,, Trans. Amer. Math. Soc., 350 (1998), 4709.   Google Scholar

[2]

J.-P. Aubin, Un théorème de compacité,, C. R. Acad. Sci. Paris, 256 (1963), 5042.   Google Scholar

[3]

V. Barcilon, D.-P. Chen, J. W. Jerome and R. S. Eisenberg, Qualitative properties of solutions of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation study,, SIAM J. Appl. Math., 57 (1997), 631.   Google Scholar

[4]

R. S. Eisenberg, M. M. Klosek and Z. Schuss, Diffusion as a chemical reaction: Stochastic trajectories between fixed concentrations,, J. Chemical Physics, 102 (1995), 1767.  doi: 10.1063/1.468704.  Google Scholar

[5]

B. Fiedler, S. Liebscher and J. C. Alexander, General Hopf bifurcation from lines of equilibria without parameters. I. Theory,, J. Differential Equations, 167 (2000), 16.   Google Scholar

[6]

B. Fiedler, S. Liebscher and J. C. Alexander, Generic Hopf bifurcation from lines of equilibria without parameters. III. Binary oscillations,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 1613.   Google Scholar

[7]

C. L. Gardner, private communication,, December, (2011).   Google Scholar

[8]

C. L. Gardner, J. W. Jerome and R. S. Eisenberg, Electrodiffusion model of rectangular current pulses in ionic channels of cellular membranes,, SIAM J. Appl. Math., 61 (2000), 792.   Google Scholar

[9]

C. L. Gardner, J. W. Jerome and R. S. Eisenberg, Electrodiffusion model simulation of rectangular current pulses ina voltage-biased biological channel,, J. Theoret. Biol., 219 (2002), 291.   Google Scholar

[10]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,'', Reprint of the 1998 edition, (1998).   Google Scholar

[11]

I. Halperin, "Introduction to the Theory of Distributions. Based on the Lectures Given by Laurent Schwartz,'', University ofToronto Press, (1952).   Google Scholar

[12]

B. Hille, "Ionic Channels of Excitable Membranes,'', Second edition, (1992).   Google Scholar

[13]

J. W. Jerome, "Approximation of Nonlinear Evolution Systems,'', Mathematics in Science and Engineering, 164 (1983).   Google Scholar

[14]

J. W. Jerome, Consistency of semiconductor modeling: An existence/stability analysis for the stationary Van Roosbroeck system,, SIAM J. Appl. Math., 45 (1985), 565.   Google Scholar

[15]

J. W. Jerome, Evolution systems in semiconductor device modeling: A cyclic uncoupled line analysis for the Gummel map,, Math. Methods Appl. Sci., 9 (1987), 455.   Google Scholar

[16]

J. W. Jerome, A trapping principle and convergence results for finite element approximate solutions of steady reaction/diffusion systems,, Numer. Math., 109 (2008), 121.   Google Scholar

[17]

M. Krupa, Robust heteroclinic cycles,, J. Nonlinear Sci., 7 (1997), 129.   Google Scholar

[18]

W. Liu and B. Wang, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels,, J. Dynam. Differential Equations, 22 (2010), 413.   Google Scholar

[19]

E. Neher and B. Sackmann, Single-channel currents recorded from membrane of denervated frog muscle-fibers,, Nature, 260 (1976), 799.   Google Scholar

[20]

H. L. Royden, "Real Analysis,'', Third edition, (1988).   Google Scholar

[21]

T. Seidman and G. M. Troianiello, Time-dependent solutions of a nonlinear system arising in semiconductor theory,, Nonlinear Analysis, 9 (1985), 1137.   Google Scholar

[22]

Z. S. Siwy, M. R. Powell, A. Petrov, E. Kalman, C. Trautmann and R. S. Eisenberg, Calcium induced voltage gating in single conical nanopores,, Nano Letters, 6 (2006), 1729.   Google Scholar

[23]

E. Stone and P. Holmes, Random perturbations of heteroclinic attractors,, SIAM J. Appl. Math., 50 (1990), 726.   Google Scholar

[24]

P. Szmolyan, Traveling waves in GaAs-semiconductors,, Physica D, 39 (1989), 393.   Google Scholar

[1]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[2]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[5]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[6]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[7]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[8]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[9]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[10]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[11]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[12]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[13]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[14]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[15]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[18]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[19]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[20]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]