October  2012, 17(7): 2561-2593. doi: 10.3934/dcdsb.2012.17.2561

Kolmogorov's normal form for equations of motion with dissipative effects

1. 

Geoazur, Université de Nice Sophia-Antipolis, Centre National de la Recherche Scientifique (UMR7329), Observatoire de la Côte d’Azur, Avenue Nicolas Copernic, 06130 Grasse, France

2. 

Dipartimento di Matematica, Università degli Studi di Roma “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Roma

Received  July 2011 Revised  April 2012 Published  July 2012

We focus on the equations of motion related to the “dissipative spin–orbit model”, which is commonly studied in Celestial Mechanics. We consider them in the more general framework of a 2$n$–dimensional action–angle phase space. Since the friction terms are assumed to be linear and isotropic with respect to the action variables, the Kolmogorov’s normalization algorithm for quasi-integrable Hamiltonians can be easily adapted to the dissipative system considered here. This allows us to prove the existence of quasi-periodic invariant tori that are local attractors.
Citation: Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2561-2593. doi: 10.3934/dcdsb.2012.17.2561
References:
[1]

V. I. Arnol'd, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under small perturbations of the Hamiltonian,, Usp. Mat. Nauk, 18 (1963), 13.   Google Scholar

[2]

G. Benettin, L. Galgani, A. Giorgilli and J.-M. Strelcyn, A proof of Kolmogorov's theorem on invariant tori using canonical transformations defined by the Lie method,, Nuovo Cimento B (11), 79 (1984), 201.  doi: 10.1007/BF02748972.  Google Scholar

[3]

H. Broer, C. Simò and J. C. Tatjer, Towards global models near homoclinic tangencies of dissipative diffeomorphisms,, Nonlinearity, 11 (1998), 667.  doi: 10.1088/0951-7715/11/3/015.  Google Scholar

[4]

A. Celletti, Periodic and quasi-periodic attractors of weakly-dissipative nearly-integrable systems,, Reg. Ch. Dyn., 14 (2009), 49.  doi: 10.1134/S1560354709010067.  Google Scholar

[5]

A. Celletti and L. Chierchia, A constructive theory of Lagrangian tori and computer-assisted applications,, in, 4 (1995), 60.   Google Scholar

[6]

A. Celletti and L. Chierchia, KAM stability and celestial mechanics,, Memoirs American Mathematical Society, 187 (2007).   Google Scholar

[7]

A. Celletti and L. Chierchia, Measures of basins of attraction in spin-orbit dynamics,, Cel. Mech. Dyn. Astr., 101 (2008), 159.  doi: 10.1007/s10569-008-9142-9.  Google Scholar

[8]

A. Celletti and L. Chierchia, Quasi-periodic attractors in celestial mechanics, Arch. Rat. Mech. Anal., 191 (2009), 311.  doi: 10.1007/s00205-008-0141-5.  Google Scholar

[9]

A. Celletti and S. Di Ruzza, Periodic and quasi-periodic orbits of the dissipative standard map,, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 151.  doi: 10.3934/dcdsb.2011.16.151.  Google Scholar

[10]

A. Celletti, A. Giorgilli and U. Locatelli, Improved estimates on the existence of invariant tori for Hamiltonian systems,, Nonlinearity, 13 (2000), 397.  doi: 10.1088/0951-7715/13/2/304.  Google Scholar

[11]

R. de la Llave, A. González, À. Jorba and J. Villanueva, KAM theory without action-angle variables,, Nonlinearity, 18 (2005), 855.   Google Scholar

[12]

B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, "Modern Geometry-Methods and Applications. Part I: The Geometry of Surfaces, Transformation Groups, and Fields,'', Second edition, 93 (1992).   Google Scholar

[13]

J.-P. Eckmann and P. Wittwer, "Computer methods and Borel summability Applied to Feigenbaum's Equation,", Lecture Notes in Physics, 227 (1985).   Google Scholar

[14]

A. Giorgilli, Quantitative methods in classical perturbation theory,, in, 336 (1993).   Google Scholar

[15]

A. Giorgilli, Notes on exponential stability of Hamiltonian systems,, in, (2003), 87.   Google Scholar

[16]

A. Giorgilli, Sistemi Dinamici II,, Lecture Notes for Students, (2010).   Google Scholar

[17]

A. Giorgilli and U. Locatelli, On classical series expansion for quasi-periodic motions,, MPEJ, 3 (1997), 1.   Google Scholar

[18]

A. Giorgilli and S. Marmi, Convergence radius in the Poincaré-Siegel problem,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 601.   Google Scholar

[19]

A. N. Kolmogorov, On Conservation of conditionally periodic movements with small change in the Hamilton function,, Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527.   Google Scholar

[20]

O. E. Lanford, III, A computer-assisted proof of the Feigenbaum conjectures,, Bull. of the Amer. Math. Soc. (N.S.), 6 (1982), 427.   Google Scholar

[21]

J. Laskar, Introduction to frequency map analysis,, in, 533 (1999), 134.   Google Scholar

[22]

J. Laskar, Frequency Map analysis and quasi periodic decompositions,, in, (2005), 99.   Google Scholar

[23]

U. Locatelli and A. Giorgilli, Invariant tori in the secular motions of the three-body planetary systems,, Cel. Mech. & Dyn. Astr., 78 (2000), 47.  doi: 10.1023/A:1011139523256.  Google Scholar

[24]

J. Moser, On invariant curves of area-preserving mappings of an annulus,, Nachr. Akad. Wiss. G\, 1962 (1962), 1.   Google Scholar

[25]

M. B. Sevryuk, "Reversible Systems,", Lect. Notes Math., 1211 (1211).   Google Scholar

[26]

L. Stefanelli, "Periodic and Quasi-Periodic Motions in Nearly-Integrable Dissipative Systems with Application to Celestial Mechanics,", Ph.D. Thesis, (2011).   Google Scholar

show all references

References:
[1]

V. I. Arnol'd, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under small perturbations of the Hamiltonian,, Usp. Mat. Nauk, 18 (1963), 13.   Google Scholar

[2]

G. Benettin, L. Galgani, A. Giorgilli and J.-M. Strelcyn, A proof of Kolmogorov's theorem on invariant tori using canonical transformations defined by the Lie method,, Nuovo Cimento B (11), 79 (1984), 201.  doi: 10.1007/BF02748972.  Google Scholar

[3]

H. Broer, C. Simò and J. C. Tatjer, Towards global models near homoclinic tangencies of dissipative diffeomorphisms,, Nonlinearity, 11 (1998), 667.  doi: 10.1088/0951-7715/11/3/015.  Google Scholar

[4]

A. Celletti, Periodic and quasi-periodic attractors of weakly-dissipative nearly-integrable systems,, Reg. Ch. Dyn., 14 (2009), 49.  doi: 10.1134/S1560354709010067.  Google Scholar

[5]

A. Celletti and L. Chierchia, A constructive theory of Lagrangian tori and computer-assisted applications,, in, 4 (1995), 60.   Google Scholar

[6]

A. Celletti and L. Chierchia, KAM stability and celestial mechanics,, Memoirs American Mathematical Society, 187 (2007).   Google Scholar

[7]

A. Celletti and L. Chierchia, Measures of basins of attraction in spin-orbit dynamics,, Cel. Mech. Dyn. Astr., 101 (2008), 159.  doi: 10.1007/s10569-008-9142-9.  Google Scholar

[8]

A. Celletti and L. Chierchia, Quasi-periodic attractors in celestial mechanics, Arch. Rat. Mech. Anal., 191 (2009), 311.  doi: 10.1007/s00205-008-0141-5.  Google Scholar

[9]

A. Celletti and S. Di Ruzza, Periodic and quasi-periodic orbits of the dissipative standard map,, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011), 151.  doi: 10.3934/dcdsb.2011.16.151.  Google Scholar

[10]

A. Celletti, A. Giorgilli and U. Locatelli, Improved estimates on the existence of invariant tori for Hamiltonian systems,, Nonlinearity, 13 (2000), 397.  doi: 10.1088/0951-7715/13/2/304.  Google Scholar

[11]

R. de la Llave, A. González, À. Jorba and J. Villanueva, KAM theory without action-angle variables,, Nonlinearity, 18 (2005), 855.   Google Scholar

[12]

B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, "Modern Geometry-Methods and Applications. Part I: The Geometry of Surfaces, Transformation Groups, and Fields,'', Second edition, 93 (1992).   Google Scholar

[13]

J.-P. Eckmann and P. Wittwer, "Computer methods and Borel summability Applied to Feigenbaum's Equation,", Lecture Notes in Physics, 227 (1985).   Google Scholar

[14]

A. Giorgilli, Quantitative methods in classical perturbation theory,, in, 336 (1993).   Google Scholar

[15]

A. Giorgilli, Notes on exponential stability of Hamiltonian systems,, in, (2003), 87.   Google Scholar

[16]

A. Giorgilli, Sistemi Dinamici II,, Lecture Notes for Students, (2010).   Google Scholar

[17]

A. Giorgilli and U. Locatelli, On classical series expansion for quasi-periodic motions,, MPEJ, 3 (1997), 1.   Google Scholar

[18]

A. Giorgilli and S. Marmi, Convergence radius in the Poincaré-Siegel problem,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 601.   Google Scholar

[19]

A. N. Kolmogorov, On Conservation of conditionally periodic movements with small change in the Hamilton function,, Dokl. Akad. Nauk SSSR (N.S.), 98 (1954), 527.   Google Scholar

[20]

O. E. Lanford, III, A computer-assisted proof of the Feigenbaum conjectures,, Bull. of the Amer. Math. Soc. (N.S.), 6 (1982), 427.   Google Scholar

[21]

J. Laskar, Introduction to frequency map analysis,, in, 533 (1999), 134.   Google Scholar

[22]

J. Laskar, Frequency Map analysis and quasi periodic decompositions,, in, (2005), 99.   Google Scholar

[23]

U. Locatelli and A. Giorgilli, Invariant tori in the secular motions of the three-body planetary systems,, Cel. Mech. & Dyn. Astr., 78 (2000), 47.  doi: 10.1023/A:1011139523256.  Google Scholar

[24]

J. Moser, On invariant curves of area-preserving mappings of an annulus,, Nachr. Akad. Wiss. G\, 1962 (1962), 1.   Google Scholar

[25]

M. B. Sevryuk, "Reversible Systems,", Lect. Notes Math., 1211 (1211).   Google Scholar

[26]

L. Stefanelli, "Periodic and Quasi-Periodic Motions in Nearly-Integrable Dissipative Systems with Application to Celestial Mechanics,", Ph.D. Thesis, (2011).   Google Scholar

[1]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[2]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[3]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[4]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[5]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[6]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[7]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[8]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[9]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[10]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[11]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[12]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[13]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[14]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[15]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[16]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[17]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[18]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[19]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[20]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]