October  2012, 17(7): 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

Stability of boundary layers for the inflow compressible Navier-Stokes equations

1. 

Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

2. 

Department of Mathematics, Shanghai University, Shanghai 200444, China

Received  April 2011 Revised  January 2012 Published  July 2012

In this paper, we consider the boundary layer stability of the one-dimensional isentropic compressible Navier-Stokes equations with an inflow boundary condition. We assume only one of the two characteristics to the corresponding Euler equations is negative up to some small time. We prove the existence of the boundary layers, then instead of using the skew symmetric matrix, we give a higher convergence rate of the approximate solution than the previous results by a standard energy method as long as the strength of the boundary layers is suitably small.
Citation: Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595
References:
[1]

E. Grenier and O. Guès, Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems,, J. Differential Equations, 143 (1998), 110.  doi: 10.1006/jdeq.1997.3364.  Google Scholar

[2]

O. Guès, G. Métivier, M. Williams and K. Zumbrun, Existence andstability of noncharacteristic boundary layers for the compressible Navier-Stokes and viscous MHD equations,, Arch. Ration. Mech. Anal., 197 (2010), 1.  doi: 10.1007/s00205-009-0277-y.  Google Scholar

[3]

J. Wang, Boundary layers for compressible Navier-Stokes equations with outflow boundary condition,, J. Differential Equations, 248 (2010), 1143.   Google Scholar

[4]

S. Kawashima, "Systems of a Hyperbilica Parabolic Type with Applications to the Equations of Magneto Hydrodynamics,", Ph.D thesis, (1983).   Google Scholar

[5]

S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications,, Proc. Roy. Soc. Edinburgh Sect. A, 106 (1987), 169.  doi: 10.1017/S0308210500018308.  Google Scholar

[6]

A. Majda and R. L. Pego, Stable viscosity matrices for systems of conservation laws,, J. Differential Equations, 56 (1985), 229.  doi: 10.1016/0022-0396(85)90107-X.  Google Scholar

[7]

N. Masmoudi and F. Rousset, Uniform regularity for the Navier-Stokes equation with Navier boundary condition,, Arch. Ration. Mech. Anal., 203 (2012), 529.  doi: 10.1007/s00205-011-0456-5.  Google Scholar

[8]

A. Matsumura and T. Nishida, Initial-boundary value problems forthe equations of motion of compressible viscous and heat-conductive fluids,, Comm. Math. Phys., 89 (1983), 445.  doi: 10.1007/BF01214738.  Google Scholar

[9]

J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity,, Trans. Amer. Math. Soc., 291 (1985), 167.  doi: 10.1090/S0002-9947-1985-0797053-4.  Google Scholar

[10]

F. Rousset, Stability of small amplitude boundary layers for mixed hyperbolic-parabolic systems,, Trans. Amer. Math. Soc., 355 (2003), 2991.  doi: 10.1090/S0002-9947-03-03279-3.  Google Scholar

[11]

F. Rousset, Characteristic boundary layers in real vanishing viscosity limits,, J. Differential Equations, 210 (2005), 25.  doi: 10.1016/j.jde.2004.10.004.  Google Scholar

[12]

D. Serre, "Systems of Conservation Laws. 2. Geometric Structures, Oscillations, and Initial-Boundary Value Problems,", Translated from the 1996 French original by I. N. Sneddon, (1996).   Google Scholar

[13]

D. Serre and K. Zumbrun, Boundary layer stability in real vanishing viscosity limit,, Comm. Math. Phys., 221 (2001), 267.  doi: 10.1007/s002200100486.  Google Scholar

[14]

A. Tani, On the first initial-boundary value problem of compressible viscous fluid motion,, Publ. RIMS. Kyoto Univ., 13 (1977), 193.  doi: 10.2977/prims/1195190106.  Google Scholar

[15]

Z. Xin, Viscous boundary layers and their stability. I,, J. Partial Differential Equations, 11 (1998), 97.   Google Scholar

[16]

Z. Xin and T. Yanagisawa, Zero-viscosity limit of the linearized Navier-Stokes equations for a compressible viscous fluid in the half-plane,, Comm. Pure Appl. Math., 52 (1999), 479.  doi: 10.1002/(SICI)1097-0312(199904)52:4<479::AID-CPA4>3.3.CO;2-T.  Google Scholar

[17]

Z. Xin, On the behavior of solutions to the compressible Navier-Stokes equations,, in, 20 (2001), 159.   Google Scholar

show all references

References:
[1]

E. Grenier and O. Guès, Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems,, J. Differential Equations, 143 (1998), 110.  doi: 10.1006/jdeq.1997.3364.  Google Scholar

[2]

O. Guès, G. Métivier, M. Williams and K. Zumbrun, Existence andstability of noncharacteristic boundary layers for the compressible Navier-Stokes and viscous MHD equations,, Arch. Ration. Mech. Anal., 197 (2010), 1.  doi: 10.1007/s00205-009-0277-y.  Google Scholar

[3]

J. Wang, Boundary layers for compressible Navier-Stokes equations with outflow boundary condition,, J. Differential Equations, 248 (2010), 1143.   Google Scholar

[4]

S. Kawashima, "Systems of a Hyperbilica Parabolic Type with Applications to the Equations of Magneto Hydrodynamics,", Ph.D thesis, (1983).   Google Scholar

[5]

S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications,, Proc. Roy. Soc. Edinburgh Sect. A, 106 (1987), 169.  doi: 10.1017/S0308210500018308.  Google Scholar

[6]

A. Majda and R. L. Pego, Stable viscosity matrices for systems of conservation laws,, J. Differential Equations, 56 (1985), 229.  doi: 10.1016/0022-0396(85)90107-X.  Google Scholar

[7]

N. Masmoudi and F. Rousset, Uniform regularity for the Navier-Stokes equation with Navier boundary condition,, Arch. Ration. Mech. Anal., 203 (2012), 529.  doi: 10.1007/s00205-011-0456-5.  Google Scholar

[8]

A. Matsumura and T. Nishida, Initial-boundary value problems forthe equations of motion of compressible viscous and heat-conductive fluids,, Comm. Math. Phys., 89 (1983), 445.  doi: 10.1007/BF01214738.  Google Scholar

[9]

J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity,, Trans. Amer. Math. Soc., 291 (1985), 167.  doi: 10.1090/S0002-9947-1985-0797053-4.  Google Scholar

[10]

F. Rousset, Stability of small amplitude boundary layers for mixed hyperbolic-parabolic systems,, Trans. Amer. Math. Soc., 355 (2003), 2991.  doi: 10.1090/S0002-9947-03-03279-3.  Google Scholar

[11]

F. Rousset, Characteristic boundary layers in real vanishing viscosity limits,, J. Differential Equations, 210 (2005), 25.  doi: 10.1016/j.jde.2004.10.004.  Google Scholar

[12]

D. Serre, "Systems of Conservation Laws. 2. Geometric Structures, Oscillations, and Initial-Boundary Value Problems,", Translated from the 1996 French original by I. N. Sneddon, (1996).   Google Scholar

[13]

D. Serre and K. Zumbrun, Boundary layer stability in real vanishing viscosity limit,, Comm. Math. Phys., 221 (2001), 267.  doi: 10.1007/s002200100486.  Google Scholar

[14]

A. Tani, On the first initial-boundary value problem of compressible viscous fluid motion,, Publ. RIMS. Kyoto Univ., 13 (1977), 193.  doi: 10.2977/prims/1195190106.  Google Scholar

[15]

Z. Xin, Viscous boundary layers and their stability. I,, J. Partial Differential Equations, 11 (1998), 97.   Google Scholar

[16]

Z. Xin and T. Yanagisawa, Zero-viscosity limit of the linearized Navier-Stokes equations for a compressible viscous fluid in the half-plane,, Comm. Pure Appl. Math., 52 (1999), 479.  doi: 10.1002/(SICI)1097-0312(199904)52:4<479::AID-CPA4>3.3.CO;2-T.  Google Scholar

[17]

Z. Xin, On the behavior of solutions to the compressible Navier-Stokes equations,, in, 20 (2001), 159.   Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[4]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[5]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[6]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[7]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[8]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[9]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[10]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[11]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[12]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[13]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[14]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[15]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[16]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[17]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[18]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[19]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[20]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]