- Previous Article
- DCDS-B Home
- This Issue
-
Next Article
A vector-bias malaria model with incubation period and diffusion
Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions
1. | School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, China |
2. | School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074, China |
3. | Institut für Mathematik, Johann Wolfgang Goethe Universität, D-60054 Frankfurt am Main, Germany |
References:
[1] |
M. Anguiano, P. Marín-Rubio and J. Real, Pullback attractors for non-autonomous reaction-diffusion equations with dynamical boundary conditions, J. Math. Anal. Appl., 383 (2011), 608-618.
doi: 10.1016/j.jmaa.2011.05.046. |
[2] |
A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992. |
[3] |
T. Caraballo, P. E. Kloeden and J. Real, Pullback and forward attractors for a damped wave equation with delays, Stoch. Dyn., 4 (2004), 405-423. |
[4] |
T. Caraballo, J. A. Langa and J. Valero, The dimension of attractors of nonautonomous partial differential equations, ANZIAM. J., 45 (2003), 207-222.
doi: 10.1017/S1446181100013274. |
[5] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.
doi: 10.1016/j.na.2005.03.111. |
[6] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C.R. Acad. Sci. Paris, Ser., 342 (2006), 263-268. |
[7] |
C. Cavaterra, C. G. Gal, M. Grasselli and A. Miranville, Phase-field systems with nonlinear coupling and dynamical boundary conditions, Nonlinear Anal., 72 (2010), 2375-2399.
doi: 10.1016/j.na.2009.11.002. |
[8] |
D. N. Cheban, P. E. Kloeden and B. Schmalfuß, The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2 (2002), 125-144. |
[9] |
V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics," American Mathematical Society Colloquium Publications, 49, Amer. Math. Soc., Providence, RI, 2002. |
[10] |
I. Chueshov and B. Schmalfuß, Parabolic stochastic partial differential equations with dynamical boundary conditions, Differential Integral Equations, 17 (2004), 751-780. |
[11] |
I. Chueshov and B. Schmalfuß, Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions, Discrete Contin. Dyn. Syst., 18 (2007), 315-338.
doi: 10.3934/dcds.2007.18.315. |
[12] |
J. W. Cholewa and T. Dlotko, "Global Attractors in Abstract Parabolic Problems," London Mathematical Society Lecture Note Series, 278, Cambridge University Press, Cambridge, 2000. |
[13] |
H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.
doi: 10.1007/BF01193705. |
[14] |
H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Differential Equations, 9 (1997), 307-341. |
[15] |
J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations, 18 (1993), 1309-1364.
doi: 10.1080/03605309308820976. |
[16] |
Z.H. Fan and C.K. Zhong, Attractors for parabolic equations with dynamic boundary conditions, Nonlinear Anal., 68 (2008), 1723-1732.
doi: 10.1016/j.na.2007.01.005. |
[17] |
C. G. Gal and M. Grasselli, The non-isothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 22 (2008), 1009-1040.
doi: 10.3934/dcds.2008.22.1009. |
[18] |
C. G. Gal and M. Warma, Well-posedness and the global attractor of some quasi-linear parabolic equations with nonlinear dynamic boundary conditions, Differential Integral Equations, 23 (2010), 327-358. |
[19] |
C. G. Gal, On a class of degenerate parabolic equations with dynamical boundary conditions,, \arXiv{1109.0469}., ().
|
[20] |
M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamical boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67-98.
doi: 10.3934/dcds.2010.28.67. |
[21] |
P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stoch. Dyn., 3 (2003), 101-112. |
[22] |
P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181.
doi: 10.1098/rspa.2006.1753. |
[23] |
P. E. Kloeden and B. Schmalfuß, Asymptotic behaviour of nonautonomous difference inclusions, Systems Control Lett., 33 (1998), 275-278.
doi: 10.1016/S0167-6911(97)00107-2. |
[24] |
J. A. Langa, G. Łukaszewicz and J. Real, Finite fractal dimension of pullback attractors for non-autonomous 2D Navier-Stokes equations in some unbounded domains, Nonlinear Anal., 66 (2007), 735-749.
doi: 10.1016/j.na.2005.12.017. |
[25] |
J. A. Langa and B. Schmalfuß, Finite dimensionality of attractors for nonautonomous dynamical systems given by partial differential equations, Stoch. Dyn., 4 (2004), 385-404. |
[26] |
Y. J. Li and C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Math. Comput., 190 (2007), 1020-1029.
doi: 10.1016/j.amc.2006.11.187. |
[27] |
Y. J. Li, S. Y. Wang and H. Q. Wu, Pullback attractors for non-autonomous reaction-diffusion equations in $L^p$, Appl. Math. Comput., 207 (2009), 373-379.
doi: 10.1016/j.amc.2008.10.065. |
[28] |
G. Łukaszewicz and A. Tarasińska, On $H^1$-pullback attractors for nonautonomous micropolar fluid equations in a bounded domain, Nonlinear Anal., 71 (2009), 782-788.
doi: 10.1016/j.na.2008.10.124. |
[29] |
G. Łukaszewicz, On pullback attractors in $H^1_0$ for nonautonomous reaction-diffusion equations, Internat. J. Bifur. Chaos, 20 (2010), 2637-2644.
doi: 10.1142/S0218127410027258. |
[30] |
G. Łukaszewicz, On pullback attractors in $L^p$ for nonautonomous reaction-diffusion equations, Nonlinear Anal., 73 (2010), 350-357.
doi: 10.1016/j.na.2010.03.023. |
[31] |
J. C. Robinson, "Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors," Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. |
[32] |
H. T. Song, Pullback attractors of non-autonomous reaction-diffusion equations in $H^1_0$, J. Differential Equations, 249 (2010), 2357-2376.
doi: 10.1016/j.jde.2010.07.034. |
[33] |
H. T. Song and H. Q. Wu, Pullback attractors of non-autonomous reaction-diffusion equations, J. Math. Anal. Appl., 325 (2007), 1200-1215.
doi: 10.1016/j.jmaa.2006.02.041. |
[34] |
J. Sprekels and H. Wu, A note on parabolic equation with nonlinear dynamic boundary condition, Nonlinear Anal., 72 (2010), 3028-3048.
doi: 10.1016/j.na.2009.11.043. |
[35] |
R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Second edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997. |
[36] |
H. Wu, Convergence to equilibrium for the semilinear parabolic equation with dynamic boundary condition, Adv. Math. Sci. Appl., 17 (2007), 67-88. |
[37] |
L. Yang, Uniform attractors for the closed process and applications to the reaction-diffusion equation with dynamical boundary condition, Nonlinear Anal., 71 (2009), 4012-4025.
doi: 10.1016/j.na.2009.02.083. |
[38] |
C-K. Zhong, M. H. Yang and C. Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399.
doi: 10.1016/j.jde.2005.06.008. |
show all references
References:
[1] |
M. Anguiano, P. Marín-Rubio and J. Real, Pullback attractors for non-autonomous reaction-diffusion equations with dynamical boundary conditions, J. Math. Anal. Appl., 383 (2011), 608-618.
doi: 10.1016/j.jmaa.2011.05.046. |
[2] |
A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992. |
[3] |
T. Caraballo, P. E. Kloeden and J. Real, Pullback and forward attractors for a damped wave equation with delays, Stoch. Dyn., 4 (2004), 405-423. |
[4] |
T. Caraballo, J. A. Langa and J. Valero, The dimension of attractors of nonautonomous partial differential equations, ANZIAM. J., 45 (2003), 207-222.
doi: 10.1017/S1446181100013274. |
[5] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.
doi: 10.1016/j.na.2005.03.111. |
[6] |
T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C.R. Acad. Sci. Paris, Ser., 342 (2006), 263-268. |
[7] |
C. Cavaterra, C. G. Gal, M. Grasselli and A. Miranville, Phase-field systems with nonlinear coupling and dynamical boundary conditions, Nonlinear Anal., 72 (2010), 2375-2399.
doi: 10.1016/j.na.2009.11.002. |
[8] |
D. N. Cheban, P. E. Kloeden and B. Schmalfuß, The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2 (2002), 125-144. |
[9] |
V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics," American Mathematical Society Colloquium Publications, 49, Amer. Math. Soc., Providence, RI, 2002. |
[10] |
I. Chueshov and B. Schmalfuß, Parabolic stochastic partial differential equations with dynamical boundary conditions, Differential Integral Equations, 17 (2004), 751-780. |
[11] |
I. Chueshov and B. Schmalfuß, Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions, Discrete Contin. Dyn. Syst., 18 (2007), 315-338.
doi: 10.3934/dcds.2007.18.315. |
[12] |
J. W. Cholewa and T. Dlotko, "Global Attractors in Abstract Parabolic Problems," London Mathematical Society Lecture Note Series, 278, Cambridge University Press, Cambridge, 2000. |
[13] |
H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.
doi: 10.1007/BF01193705. |
[14] |
H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Differential Equations, 9 (1997), 307-341. |
[15] |
J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations, 18 (1993), 1309-1364.
doi: 10.1080/03605309308820976. |
[16] |
Z.H. Fan and C.K. Zhong, Attractors for parabolic equations with dynamic boundary conditions, Nonlinear Anal., 68 (2008), 1723-1732.
doi: 10.1016/j.na.2007.01.005. |
[17] |
C. G. Gal and M. Grasselli, The non-isothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 22 (2008), 1009-1040.
doi: 10.3934/dcds.2008.22.1009. |
[18] |
C. G. Gal and M. Warma, Well-posedness and the global attractor of some quasi-linear parabolic equations with nonlinear dynamic boundary conditions, Differential Integral Equations, 23 (2010), 327-358. |
[19] |
C. G. Gal, On a class of degenerate parabolic equations with dynamical boundary conditions,, \arXiv{1109.0469}., ().
|
[20] |
M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamical boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67-98.
doi: 10.3934/dcds.2010.28.67. |
[21] |
P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stoch. Dyn., 3 (2003), 101-112. |
[22] |
P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181.
doi: 10.1098/rspa.2006.1753. |
[23] |
P. E. Kloeden and B. Schmalfuß, Asymptotic behaviour of nonautonomous difference inclusions, Systems Control Lett., 33 (1998), 275-278.
doi: 10.1016/S0167-6911(97)00107-2. |
[24] |
J. A. Langa, G. Łukaszewicz and J. Real, Finite fractal dimension of pullback attractors for non-autonomous 2D Navier-Stokes equations in some unbounded domains, Nonlinear Anal., 66 (2007), 735-749.
doi: 10.1016/j.na.2005.12.017. |
[25] |
J. A. Langa and B. Schmalfuß, Finite dimensionality of attractors for nonautonomous dynamical systems given by partial differential equations, Stoch. Dyn., 4 (2004), 385-404. |
[26] |
Y. J. Li and C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Math. Comput., 190 (2007), 1020-1029.
doi: 10.1016/j.amc.2006.11.187. |
[27] |
Y. J. Li, S. Y. Wang and H. Q. Wu, Pullback attractors for non-autonomous reaction-diffusion equations in $L^p$, Appl. Math. Comput., 207 (2009), 373-379.
doi: 10.1016/j.amc.2008.10.065. |
[28] |
G. Łukaszewicz and A. Tarasińska, On $H^1$-pullback attractors for nonautonomous micropolar fluid equations in a bounded domain, Nonlinear Anal., 71 (2009), 782-788.
doi: 10.1016/j.na.2008.10.124. |
[29] |
G. Łukaszewicz, On pullback attractors in $H^1_0$ for nonautonomous reaction-diffusion equations, Internat. J. Bifur. Chaos, 20 (2010), 2637-2644.
doi: 10.1142/S0218127410027258. |
[30] |
G. Łukaszewicz, On pullback attractors in $L^p$ for nonautonomous reaction-diffusion equations, Nonlinear Anal., 73 (2010), 350-357.
doi: 10.1016/j.na.2010.03.023. |
[31] |
J. C. Robinson, "Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors," Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001. |
[32] |
H. T. Song, Pullback attractors of non-autonomous reaction-diffusion equations in $H^1_0$, J. Differential Equations, 249 (2010), 2357-2376.
doi: 10.1016/j.jde.2010.07.034. |
[33] |
H. T. Song and H. Q. Wu, Pullback attractors of non-autonomous reaction-diffusion equations, J. Math. Anal. Appl., 325 (2007), 1200-1215.
doi: 10.1016/j.jmaa.2006.02.041. |
[34] |
J. Sprekels and H. Wu, A note on parabolic equation with nonlinear dynamic boundary condition, Nonlinear Anal., 72 (2010), 3028-3048.
doi: 10.1016/j.na.2009.11.043. |
[35] |
R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Second edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997. |
[36] |
H. Wu, Convergence to equilibrium for the semilinear parabolic equation with dynamic boundary condition, Adv. Math. Sci. Appl., 17 (2007), 67-88. |
[37] |
L. Yang, Uniform attractors for the closed process and applications to the reaction-diffusion equation with dynamical boundary condition, Nonlinear Anal., 71 (2009), 4012-4025.
doi: 10.1016/j.na.2009.02.083. |
[38] |
C-K. Zhong, M. H. Yang and C. Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399.
doi: 10.1016/j.jde.2005.06.008. |
[1] |
Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194 |
[2] |
Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801 |
[3] |
Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107 |
[4] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations and Control Theory, 2022, 11 (2) : 399-414. doi: 10.3934/eect.2021005 |
[5] |
Shun Uchida. Solvability of doubly nonlinear parabolic equation with p-laplacian. Evolution Equations and Control Theory, 2022, 11 (3) : 975-1000. doi: 10.3934/eect.2021033 |
[6] |
Linfang Liu, Xianlong Fu. Existence and upper semicontinuity of (L2, Lq) pullback attractors for a stochastic p-laplacian equation. Communications on Pure and Applied Analysis, 2017, 6 (2) : 443-474. doi: 10.3934/cpaa.2017023 |
[7] |
Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control and Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021 |
[8] |
Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058 |
[9] |
Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595 |
[10] |
Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure and Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371 |
[11] |
Vitali Liskevich, Igor I. Skrypnik. Pointwise estimates for solutions of singular quasi-linear parabolic equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1029-1042. doi: 10.3934/dcdss.2013.6.1029 |
[12] |
Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063 |
[13] |
Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033 |
[14] |
Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems and Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020 |
[15] |
Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345 |
[16] |
Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040 |
[17] |
Kunio Hidano, Dongbing Zha. Remarks on a system of quasi-linear wave equations in 3D satisfying the weak null condition. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1735-1767. doi: 10.3934/cpaa.2019082 |
[18] |
Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623 |
[19] |
Guifen Liu, Wenqiang Zhao. Regularity of Wong-Zakai approximation for non-autonomous stochastic quasi-linear parabolic equation on $ {\mathbb{R}}^N $. Electronic Research Archive, 2021, 29 (6) : 3655-3686. doi: 10.3934/era.2021056 |
[20] |
Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]