\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions

Abstract Related Papers Cited by
  • The existence of a unique minimal pullback attractor is established for the evolutionary process associated with a non-autonomous quasi-linear parabolic equations with a dynamical boundary condition in $L^{r_1}(\Omega)\times L^{r_1}(\Gamma)$ under that assumption that the external forcing term satisfies a weak integrability condition, where $r_1$ $>$ $2$ is determined by the order of the nonlinearity.
    Mathematics Subject Classification: 37L05, 35B40, 35B41.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Anguiano, P. Marín-Rubio and J. Real, Pullback attractors for non-autonomous reaction-diffusion equations with dynamical boundary conditions, J. Math. Anal. Appl., 383 (2011), 608-618.doi: 10.1016/j.jmaa.2011.05.046.

    [2]

    A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992.

    [3]

    T. Caraballo, P. E. Kloeden and J. Real, Pullback and forward attractors for a damped wave equation with delays, Stoch. Dyn., 4 (2004), 405-423.

    [4]

    T. Caraballo, J. A. Langa and J. Valero, The dimension of attractors of nonautonomous partial differential equations, ANZIAM. J., 45 (2003), 207-222.doi: 10.1017/S1446181100013274.

    [5]

    T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.doi: 10.1016/j.na.2005.03.111.

    [6]

    T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C.R. Acad. Sci. Paris, Ser., 342 (2006), 263-268.

    [7]

    C. Cavaterra, C. G. Gal, M. Grasselli and A. Miranville, Phase-field systems with nonlinear coupling and dynamical boundary conditions, Nonlinear Anal., 72 (2010), 2375-2399.doi: 10.1016/j.na.2009.11.002.

    [8]

    D. N. Cheban, P. E. Kloeden and B. Schmalfuß, The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2 (2002), 125-144.

    [9]

    V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics," American Mathematical Society Colloquium Publications, 49, Amer. Math. Soc., Providence, RI, 2002.

    [10]

    I. Chueshov and B. Schmalfuß, Parabolic stochastic partial differential equations with dynamical boundary conditions, Differential Integral Equations, 17 (2004), 751-780.

    [11]

    I. Chueshov and B. Schmalfuß, Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions, Discrete Contin. Dyn. Syst., 18 (2007), 315-338.doi: 10.3934/dcds.2007.18.315.

    [12]

    J. W. Cholewa and T. Dlotko, "Global Attractors in Abstract Parabolic Problems," London Mathematical Society Lecture Note Series, 278, Cambridge University Press, Cambridge, 2000.

    [13]

    H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.doi: 10.1007/BF01193705.

    [14]

    H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Differential Equations, 9 (1997), 307-341.

    [15]

    J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations, 18 (1993), 1309-1364.doi: 10.1080/03605309308820976.

    [16]

    Z.H. Fan and C.K. Zhong, Attractors for parabolic equations with dynamic boundary conditions, Nonlinear Anal., 68 (2008), 1723-1732.doi: 10.1016/j.na.2007.01.005.

    [17]

    C. G. Gal and M. Grasselli, The non-isothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 22 (2008), 1009-1040.doi: 10.3934/dcds.2008.22.1009.

    [18]

    C. G. Gal and M. Warma, Well-posedness and the global attractor of some quasi-linear parabolic equations with nonlinear dynamic boundary conditions, Differential Integral Equations, 23 (2010), 327-358.

    [19]

    C. G. GalOn a class of degenerate parabolic equations with dynamical boundary conditions, arXiv:1109.0469.

    [20]

    M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamical boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67-98.doi: 10.3934/dcds.2010.28.67.

    [21]

    P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stoch. Dyn., 3 (2003), 101-112.

    [22]

    P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181.doi: 10.1098/rspa.2006.1753.

    [23]

    P. E. Kloeden and B. Schmalfuß, Asymptotic behaviour of nonautonomous difference inclusions, Systems Control Lett., 33 (1998), 275-278.doi: 10.1016/S0167-6911(97)00107-2.

    [24]

    J. A. Langa, G. Łukaszewicz and J. Real, Finite fractal dimension of pullback attractors for non-autonomous 2D Navier-Stokes equations in some unbounded domains, Nonlinear Anal., 66 (2007), 735-749.doi: 10.1016/j.na.2005.12.017.

    [25]

    J. A. Langa and B. Schmalfuß, Finite dimensionality of attractors for nonautonomous dynamical systems given by partial differential equations, Stoch. Dyn., 4 (2004), 385-404.

    [26]

    Y. J. Li and C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Math. Comput., 190 (2007), 1020-1029.doi: 10.1016/j.amc.2006.11.187.

    [27]

    Y. J. Li, S. Y. Wang and H. Q. Wu, Pullback attractors for non-autonomous reaction-diffusion equations in $L^p$, Appl. Math. Comput., 207 (2009), 373-379.doi: 10.1016/j.amc.2008.10.065.

    [28]

    G. Łukaszewicz and A. Tarasińska, On $H^1$-pullback attractors for nonautonomous micropolar fluid equations in a bounded domain, Nonlinear Anal., 71 (2009), 782-788.doi: 10.1016/j.na.2008.10.124.

    [29]

    G. Łukaszewicz, On pullback attractors in $H^1_0$ for nonautonomous reaction-diffusion equations, Internat. J. Bifur. Chaos, 20 (2010), 2637-2644.doi: 10.1142/S0218127410027258.

    [30]

    G. Łukaszewicz, On pullback attractors in $L^p$ for nonautonomous reaction-diffusion equations, Nonlinear Anal., 73 (2010), 350-357.doi: 10.1016/j.na.2010.03.023.

    [31]

    J. C. Robinson, "Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors," Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.

    [32]

    H. T. Song, Pullback attractors of non-autonomous reaction-diffusion equations in $H^1_0$, J. Differential Equations, 249 (2010), 2357-2376.doi: 10.1016/j.jde.2010.07.034.

    [33]

    H. T. Song and H. Q. Wu, Pullback attractors of non-autonomous reaction-diffusion equations, J. Math. Anal. Appl., 325 (2007), 1200-1215.doi: 10.1016/j.jmaa.2006.02.041.

    [34]

    J. Sprekels and H. Wu, A note on parabolic equation with nonlinear dynamic boundary condition, Nonlinear Anal., 72 (2010), 3028-3048.doi: 10.1016/j.na.2009.11.043.

    [35]

    R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Second edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997.

    [36]

    H. Wu, Convergence to equilibrium for the semilinear parabolic equation with dynamic boundary condition, Adv. Math. Sci. Appl., 17 (2007), 67-88.

    [37]

    L. Yang, Uniform attractors for the closed process and applications to the reaction-diffusion equation with dynamical boundary condition, Nonlinear Anal., 71 (2009), 4012-4025.doi: 10.1016/j.na.2009.02.083.

    [38]

    C-K. Zhong, M. H. Yang and C. Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399.doi: 10.1016/j.jde.2005.06.008.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return