October  2012, 17(7): 2635-2651. doi: 10.3934/dcdsb.2012.17.2635

Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions

1. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, China

2. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074, China

3. 

Institut für Mathematik, Johann Wolfgang Goethe Universität, D-60054 Frankfurt am Main, Germany

Received  April 2012 Revised  May 2012 Published  July 2012

The existence of a unique minimal pullback attractor is established for the evolutionary process associated with a non-autonomous quasi-linear parabolic equations with a dynamical boundary condition in $L^{r_1}(\Omega)\times L^{r_1}(\Gamma)$ under that assumption that the external forcing term satisfies a weak integrability condition, where $r_1$ $>$ $2$ is determined by the order of the nonlinearity.
Citation: Lu Yang, Meihua Yang, Peter E. Kloeden. Pullback attractors for non-autonomous quasi-linear parabolic equations with dynamical boundary conditions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2635-2651. doi: 10.3934/dcdsb.2012.17.2635
References:
[1]

M. Anguiano, P. Marín-Rubio and J. Real, Pullback attractors for non-autonomous reaction-diffusion equations with dynamical boundary conditions, J. Math. Anal. Appl., 383 (2011), 608-618. doi: 10.1016/j.jmaa.2011.05.046.

[2]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992.

[3]

T. Caraballo, P. E. Kloeden and J. Real, Pullback and forward attractors for a damped wave equation with delays, Stoch. Dyn., 4 (2004), 405-423.

[4]

T. Caraballo, J. A. Langa and J. Valero, The dimension of attractors of nonautonomous partial differential equations, ANZIAM. J., 45 (2003), 207-222. doi: 10.1017/S1446181100013274.

[5]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498. doi: 10.1016/j.na.2005.03.111.

[6]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C.R. Acad. Sci. Paris, Ser., 342 (2006), 263-268.

[7]

C. Cavaterra, C. G. Gal, M. Grasselli and A. Miranville, Phase-field systems with nonlinear coupling and dynamical boundary conditions, Nonlinear Anal., 72 (2010), 2375-2399. doi: 10.1016/j.na.2009.11.002.

[8]

D. N. Cheban, P. E. Kloeden and B. Schmalfuß, The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2 (2002), 125-144.

[9]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics," American Mathematical Society Colloquium Publications, 49, Amer. Math. Soc., Providence, RI, 2002.

[10]

I. Chueshov and B. Schmalfuß, Parabolic stochastic partial differential equations with dynamical boundary conditions, Differential Integral Equations, 17 (2004), 751-780.

[11]

I. Chueshov and B. Schmalfuß, Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions, Discrete Contin. Dyn. Syst., 18 (2007), 315-338. doi: 10.3934/dcds.2007.18.315.

[12]

J. W. Cholewa and T. Dlotko, "Global Attractors in Abstract Parabolic Problems," London Mathematical Society Lecture Note Series, 278, Cambridge University Press, Cambridge, 2000.

[13]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705.

[14]

H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Differential Equations, 9 (1997), 307-341.

[15]

J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations, 18 (1993), 1309-1364. doi: 10.1080/03605309308820976.

[16]

Z.H. Fan and C.K. Zhong, Attractors for parabolic equations with dynamic boundary conditions, Nonlinear Anal., 68 (2008), 1723-1732. doi: 10.1016/j.na.2007.01.005.

[17]

C. G. Gal and M. Grasselli, The non-isothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 22 (2008), 1009-1040. doi: 10.3934/dcds.2008.22.1009.

[18]

C. G. Gal and M. Warma, Well-posedness and the global attractor of some quasi-linear parabolic equations with nonlinear dynamic boundary conditions, Differential Integral Equations, 23 (2010), 327-358.

[19]

C. G. Gal, On a class of degenerate parabolic equations with dynamical boundary conditionsarXiv:1109.0469.

[20]

M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamical boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67-98. doi: 10.3934/dcds.2010.28.67.

[21]

P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stoch. Dyn., 3 (2003), 101-112.

[22]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181. doi: 10.1098/rspa.2006.1753.

[23]

P. E. Kloeden and B. Schmalfuß, Asymptotic behaviour of nonautonomous difference inclusions, Systems Control Lett., 33 (1998), 275-278. doi: 10.1016/S0167-6911(97)00107-2.

[24]

J. A. Langa, G. Łukaszewicz and J. Real, Finite fractal dimension of pullback attractors for non-autonomous 2D Navier-Stokes equations in some unbounded domains, Nonlinear Anal., 66 (2007), 735-749. doi: 10.1016/j.na.2005.12.017.

[25]

J. A. Langa and B. Schmalfuß, Finite dimensionality of attractors for nonautonomous dynamical systems given by partial differential equations, Stoch. Dyn., 4 (2004), 385-404.

[26]

Y. J. Li and C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Math. Comput., 190 (2007), 1020-1029. doi: 10.1016/j.amc.2006.11.187.

[27]

Y. J. Li, S. Y. Wang and H. Q. Wu, Pullback attractors for non-autonomous reaction-diffusion equations in $L^p$, Appl. Math. Comput., 207 (2009), 373-379. doi: 10.1016/j.amc.2008.10.065.

[28]

G. Łukaszewicz and A. Tarasińska, On $H^1$-pullback attractors for nonautonomous micropolar fluid equations in a bounded domain, Nonlinear Anal., 71 (2009), 782-788. doi: 10.1016/j.na.2008.10.124.

[29]

G. Łukaszewicz, On pullback attractors in $H^1_0$ for nonautonomous reaction-diffusion equations, Internat. J. Bifur. Chaos, 20 (2010), 2637-2644. doi: 10.1142/S0218127410027258.

[30]

G. Łukaszewicz, On pullback attractors in $L^p$ for nonautonomous reaction-diffusion equations, Nonlinear Anal., 73 (2010), 350-357. doi: 10.1016/j.na.2010.03.023.

[31]

J. C. Robinson, "Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors," Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.

[32]

H. T. Song, Pullback attractors of non-autonomous reaction-diffusion equations in $H^1_0$, J. Differential Equations, 249 (2010), 2357-2376. doi: 10.1016/j.jde.2010.07.034.

[33]

H. T. Song and H. Q. Wu, Pullback attractors of non-autonomous reaction-diffusion equations, J. Math. Anal. Appl., 325 (2007), 1200-1215. doi: 10.1016/j.jmaa.2006.02.041.

[34]

J. Sprekels and H. Wu, A note on parabolic equation with nonlinear dynamic boundary condition, Nonlinear Anal., 72 (2010), 3028-3048. doi: 10.1016/j.na.2009.11.043.

[35]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Second edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997.

[36]

H. Wu, Convergence to equilibrium for the semilinear parabolic equation with dynamic boundary condition, Adv. Math. Sci. Appl., 17 (2007), 67-88.

[37]

L. Yang, Uniform attractors for the closed process and applications to the reaction-diffusion equation with dynamical boundary condition, Nonlinear Anal., 71 (2009), 4012-4025. doi: 10.1016/j.na.2009.02.083.

[38]

C-K. Zhong, M. H. Yang and C. Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399. doi: 10.1016/j.jde.2005.06.008.

show all references

References:
[1]

M. Anguiano, P. Marín-Rubio and J. Real, Pullback attractors for non-autonomous reaction-diffusion equations with dynamical boundary conditions, J. Math. Anal. Appl., 383 (2011), 608-618. doi: 10.1016/j.jmaa.2011.05.046.

[2]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992.

[3]

T. Caraballo, P. E. Kloeden and J. Real, Pullback and forward attractors for a damped wave equation with delays, Stoch. Dyn., 4 (2004), 405-423.

[4]

T. Caraballo, J. A. Langa and J. Valero, The dimension of attractors of nonautonomous partial differential equations, ANZIAM. J., 45 (2003), 207-222. doi: 10.1017/S1446181100013274.

[5]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498. doi: 10.1016/j.na.2005.03.111.

[6]

T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C.R. Acad. Sci. Paris, Ser., 342 (2006), 263-268.

[7]

C. Cavaterra, C. G. Gal, M. Grasselli and A. Miranville, Phase-field systems with nonlinear coupling and dynamical boundary conditions, Nonlinear Anal., 72 (2010), 2375-2399. doi: 10.1016/j.na.2009.11.002.

[8]

D. N. Cheban, P. E. Kloeden and B. Schmalfuß, The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2 (2002), 125-144.

[9]

V. V. Chepyzhov and M. I. Vishik, "Attractors for Equations of Mathematical Physics," American Mathematical Society Colloquium Publications, 49, Amer. Math. Soc., Providence, RI, 2002.

[10]

I. Chueshov and B. Schmalfuß, Parabolic stochastic partial differential equations with dynamical boundary conditions, Differential Integral Equations, 17 (2004), 751-780.

[11]

I. Chueshov and B. Schmalfuß, Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions, Discrete Contin. Dyn. Syst., 18 (2007), 315-338. doi: 10.3934/dcds.2007.18.315.

[12]

J. W. Cholewa and T. Dlotko, "Global Attractors in Abstract Parabolic Problems," London Mathematical Society Lecture Note Series, 278, Cambridge University Press, Cambridge, 2000.

[13]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705.

[14]

H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Differential Equations, 9 (1997), 307-341.

[15]

J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations, 18 (1993), 1309-1364. doi: 10.1080/03605309308820976.

[16]

Z.H. Fan and C.K. Zhong, Attractors for parabolic equations with dynamic boundary conditions, Nonlinear Anal., 68 (2008), 1723-1732. doi: 10.1016/j.na.2007.01.005.

[17]

C. G. Gal and M. Grasselli, The non-isothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 22 (2008), 1009-1040. doi: 10.3934/dcds.2008.22.1009.

[18]

C. G. Gal and M. Warma, Well-posedness and the global attractor of some quasi-linear parabolic equations with nonlinear dynamic boundary conditions, Differential Integral Equations, 23 (2010), 327-358.

[19]

C. G. Gal, On a class of degenerate parabolic equations with dynamical boundary conditionsarXiv:1109.0469.

[20]

M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamical boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67-98. doi: 10.3934/dcds.2010.28.67.

[21]

P. E. Kloeden, Pullback attractors of nonautonomous semidynamical systems, Stoch. Dyn., 3 (2003), 101-112.

[22]

P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 163-181. doi: 10.1098/rspa.2006.1753.

[23]

P. E. Kloeden and B. Schmalfuß, Asymptotic behaviour of nonautonomous difference inclusions, Systems Control Lett., 33 (1998), 275-278. doi: 10.1016/S0167-6911(97)00107-2.

[24]

J. A. Langa, G. Łukaszewicz and J. Real, Finite fractal dimension of pullback attractors for non-autonomous 2D Navier-Stokes equations in some unbounded domains, Nonlinear Anal., 66 (2007), 735-749. doi: 10.1016/j.na.2005.12.017.

[25]

J. A. Langa and B. Schmalfuß, Finite dimensionality of attractors for nonautonomous dynamical systems given by partial differential equations, Stoch. Dyn., 4 (2004), 385-404.

[26]

Y. J. Li and C. K. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Math. Comput., 190 (2007), 1020-1029. doi: 10.1016/j.amc.2006.11.187.

[27]

Y. J. Li, S. Y. Wang and H. Q. Wu, Pullback attractors for non-autonomous reaction-diffusion equations in $L^p$, Appl. Math. Comput., 207 (2009), 373-379. doi: 10.1016/j.amc.2008.10.065.

[28]

G. Łukaszewicz and A. Tarasińska, On $H^1$-pullback attractors for nonautonomous micropolar fluid equations in a bounded domain, Nonlinear Anal., 71 (2009), 782-788. doi: 10.1016/j.na.2008.10.124.

[29]

G. Łukaszewicz, On pullback attractors in $H^1_0$ for nonautonomous reaction-diffusion equations, Internat. J. Bifur. Chaos, 20 (2010), 2637-2644. doi: 10.1142/S0218127410027258.

[30]

G. Łukaszewicz, On pullback attractors in $L^p$ for nonautonomous reaction-diffusion equations, Nonlinear Anal., 73 (2010), 350-357. doi: 10.1016/j.na.2010.03.023.

[31]

J. C. Robinson, "Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors," Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.

[32]

H. T. Song, Pullback attractors of non-autonomous reaction-diffusion equations in $H^1_0$, J. Differential Equations, 249 (2010), 2357-2376. doi: 10.1016/j.jde.2010.07.034.

[33]

H. T. Song and H. Q. Wu, Pullback attractors of non-autonomous reaction-diffusion equations, J. Math. Anal. Appl., 325 (2007), 1200-1215. doi: 10.1016/j.jmaa.2006.02.041.

[34]

J. Sprekels and H. Wu, A note on parabolic equation with nonlinear dynamic boundary condition, Nonlinear Anal., 72 (2010), 3028-3048. doi: 10.1016/j.na.2009.11.043.

[35]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Second edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997.

[36]

H. Wu, Convergence to equilibrium for the semilinear parabolic equation with dynamic boundary condition, Adv. Math. Sci. Appl., 17 (2007), 67-88.

[37]

L. Yang, Uniform attractors for the closed process and applications to the reaction-diffusion equation with dynamical boundary condition, Nonlinear Anal., 71 (2009), 4012-4025. doi: 10.1016/j.na.2009.02.083.

[38]

C-K. Zhong, M. H. Yang and C. Y. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399. doi: 10.1016/j.jde.2005.06.008.

[1]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[2]

Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801

[3]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[4]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations and Control Theory, 2022, 11 (2) : 399-414. doi: 10.3934/eect.2021005

[5]

Shun Uchida. Solvability of doubly nonlinear parabolic equation with p-laplacian. Evolution Equations and Control Theory, 2022, 11 (3) : 975-1000. doi: 10.3934/eect.2021033

[6]

Linfang Liu, Xianlong Fu. Existence and upper semicontinuity of (L2, Lq) pullback attractors for a stochastic p-laplacian equation. Communications on Pure and Applied Analysis, 2017, 6 (2) : 443-474. doi: 10.3934/cpaa.2017023

[7]

Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control and Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021

[8]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[9]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[10]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure and Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[11]

Vitali Liskevich, Igor I. Skrypnik. Pointwise estimates for solutions of singular quasi-linear parabolic equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1029-1042. doi: 10.3934/dcdss.2013.6.1029

[12]

Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063

[13]

Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033

[14]

Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems and Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020

[15]

Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

[16]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[17]

Kunio Hidano, Dongbing Zha. Remarks on a system of quasi-linear wave equations in 3D satisfying the weak null condition. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1735-1767. doi: 10.3934/cpaa.2019082

[18]

Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623

[19]

Guifen Liu, Wenqiang Zhao. Regularity of Wong-Zakai approximation for non-autonomous stochastic quasi-linear parabolic equation on $ {\mathbb{R}}^N $. Electronic Research Archive, 2021, 29 (6) : 3655-3686. doi: 10.3934/era.2021056

[20]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (99)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]