November  2012, 17(8): 2671-2689. doi: 10.3934/dcdsb.2012.17.2671

Steady states in hierarchical structured populations with distributed states at birth

1. 

Department of Computing Science and Mathematics, University of Stirling, Stirling, FK9 4LA, United Kingdom

2. 

Department of Mathematical Sciences, University of Wisconsin – Milwaukee, P.O. Box 413, Milwaukee, WI 53201-0413

Received  March 2011 Revised  August 2011 Published  July 2012

We investigate steady states of a quasilinear first order hyperbolic partial integro-differential equation. The model describes the evolution of a hierarchical structured population with distributed states at birth. Hierarchical size-structured models describe the dynamics of populations when individuals experience size-specific environment. This is the case for example in a population where individuals exhibit cannibalistic behavior and the chance to become prey (or to attack) depends on the individual's size. The other distinctive feature of the model is that individuals are recruited into the population at arbitrary size. This amounts to an infinite rank integral operator describing the recruitment process. First we establish conditions for the existence of a positive steady state of the model. Our method uses a fixed point result of nonlinear maps in conical shells of Banach spaces. Then we study stability properties of steady states for the special case of a separable growth rate using results from the theory of positive operators on Banach lattices.
Citation: József Z. Farkas, Peter Hinow. Steady states in hierarchical structured populations with distributed states at birth. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2671-2689. doi: 10.3934/dcdsb.2012.17.2671
References:
[1]

A. S. Ackleh, K. Deng and S. Hu, A quasilinear hierarchical size-structured model: Well-posedness andapproximation,, Appl. Math. Optim., 51 (2005), 35. Google Scholar

[2]

A. S. Ackleh and K. Ito, Measure-valued solutions for a hierarchically size-structured population,, J. Differential Equations, 217 (2005), 431. Google Scholar

[3]

R. A. Adams and J. J. F. Fournier, "Sobolev Spaces," 2nd edition,, Pure and Applied Mathematics (Amsterdam), 140 (2003). Google Scholar

[4]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces,, SIAM Rev., 18 (1976), 620. Google Scholar

[5]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, "One-Parameter Semigroups of Positive Operators,", Lecture Notes in Mathematics, 1184 (1986). Google Scholar

[6]

À. Calsina and J. Saldań, Asymptotic behavior of a model ofhierarchically structured population dynamics,, J. Math. Biol., 35 (1997), 967. Google Scholar

[7]

À. Calsina and J. Saldañ, Basic theory for a class of models ofhierarchically structured population dynamics with distributed states in the recruitment,, Math. Models Methods Appl. Sci., 16 (2006), 1695. Google Scholar

[8]

J. M. Cushing, The dynamics of hierarchical age-structured populations,, J. Math. Biol., 32 (1994), 705. Google Scholar

[9]

J. M. Cushing, "An Introduction to Structured Population Dynamics,", CBMS-NSF Regional Conference Series in Applied Mathematics, 71 (1998). Google Scholar

[10]

K. Deimling, "Nonlinear Functional Analysis,", Springer-Verlag, (1985). Google Scholar

[11]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Graduate Texts in Mathematics, 194 (2000). Google Scholar

[12]

J. Z. Farkas, D. M. Green and P. Hinow, Semigroup analysis ofstructured parasite populations,, Math. Model. Nat. Phenom., 5 (2010), 94. Google Scholar

[13]

J. Z. Farkas and T. Hagen, Stability and regularity results for asize-structured population model,, J. Math. Anal. Appl., 328 (2007), 119. Google Scholar

[14]

J. Z. Farkas and T. Hagen, Asymptotic analysis of a size-structured cannibalism model with infinite dimensional environmental feedback,, Commun. Pure Appl. Anal., 8 (2009), 1825. Google Scholar

[15]

J. Z. Farkas and T. Hagen, Hierarchical size-structured populations: The linearized semigroup approach,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 17 (2010), 639. Google Scholar

[16]

J. Z. Farkas and P. Hinow, On a size-structured two-phase population model with infinite states-at-birth,, Positivity, 14 (2010), 501. Google Scholar

[17]

A. Grabosch and H. J. A. M. Heijmans, Cauchy problems with state-dependent time evolution,, Japan J. Appl. Math., 7 (1990), 433. Google Scholar

[18]

M. E. Gurtin and R. C. MacCamy, Non-linear age-dependent population dynamics,, Arch. Rational Mech. Anal., 54 (1974), 281. Google Scholar

[19]

S. M. Henson and J. M. Cushing, Hierarchical models of intra-specific competition: Scramble versus contest,, J. Math. Biol., 34 (1996), 755. Google Scholar

[20]

S. R.-J. Jang and J. M. Cushing, A discrete hierarchical model ofintra-specific competition,, J. Math. Anal. Appl., 280 (2003), 102. Google Scholar

[21]

S. R.-J. Jang and J. M. Cushing, Dynamics of hierarchical models in discrete-time,, J. Difference Equ. Appl., 11 (2005), 95. Google Scholar

[22]

N. Kato, A principle of linearized stability for nonlinear evolution equations,, Trans. Amer. Math. Soc., 347 (1995), 2851. Google Scholar

[23]

J. A. J. Metz and O. Diekmann, Age dependence,, in, 68 (1983). Google Scholar

[24]

J. Prüss, On the qualitative behavior of populations with age-specific interactions,, Comput. Math. Appl., 9 (1983), 327. Google Scholar

[25]

S. L. Tucker and S. O. Zimmerman, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables,, SIAM J. Appl. Math., 48 (1988), 549. Google Scholar

[26]

Ch. Walker, Global bifurcation of positive equilibria in nonlinear population models,, J. Diff. Eq., 248 (2010), 1756. Google Scholar

[27]

G. F. Webb, "Theory of Nonlinear Age-Dependent Population Dynamics,", Monographs and Textbooks in Pure and Applied Mathematics, 89 (1985). Google Scholar

[28]

K. Yosida, "Functional Analysis,", Reprint of the sixth (1980) edition, (1980). Google Scholar

show all references

References:
[1]

A. S. Ackleh, K. Deng and S. Hu, A quasilinear hierarchical size-structured model: Well-posedness andapproximation,, Appl. Math. Optim., 51 (2005), 35. Google Scholar

[2]

A. S. Ackleh and K. Ito, Measure-valued solutions for a hierarchically size-structured population,, J. Differential Equations, 217 (2005), 431. Google Scholar

[3]

R. A. Adams and J. J. F. Fournier, "Sobolev Spaces," 2nd edition,, Pure and Applied Mathematics (Amsterdam), 140 (2003). Google Scholar

[4]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces,, SIAM Rev., 18 (1976), 620. Google Scholar

[5]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, "One-Parameter Semigroups of Positive Operators,", Lecture Notes in Mathematics, 1184 (1986). Google Scholar

[6]

À. Calsina and J. Saldań, Asymptotic behavior of a model ofhierarchically structured population dynamics,, J. Math. Biol., 35 (1997), 967. Google Scholar

[7]

À. Calsina and J. Saldañ, Basic theory for a class of models ofhierarchically structured population dynamics with distributed states in the recruitment,, Math. Models Methods Appl. Sci., 16 (2006), 1695. Google Scholar

[8]

J. M. Cushing, The dynamics of hierarchical age-structured populations,, J. Math. Biol., 32 (1994), 705. Google Scholar

[9]

J. M. Cushing, "An Introduction to Structured Population Dynamics,", CBMS-NSF Regional Conference Series in Applied Mathematics, 71 (1998). Google Scholar

[10]

K. Deimling, "Nonlinear Functional Analysis,", Springer-Verlag, (1985). Google Scholar

[11]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Graduate Texts in Mathematics, 194 (2000). Google Scholar

[12]

J. Z. Farkas, D. M. Green and P. Hinow, Semigroup analysis ofstructured parasite populations,, Math. Model. Nat. Phenom., 5 (2010), 94. Google Scholar

[13]

J. Z. Farkas and T. Hagen, Stability and regularity results for asize-structured population model,, J. Math. Anal. Appl., 328 (2007), 119. Google Scholar

[14]

J. Z. Farkas and T. Hagen, Asymptotic analysis of a size-structured cannibalism model with infinite dimensional environmental feedback,, Commun. Pure Appl. Anal., 8 (2009), 1825. Google Scholar

[15]

J. Z. Farkas and T. Hagen, Hierarchical size-structured populations: The linearized semigroup approach,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 17 (2010), 639. Google Scholar

[16]

J. Z. Farkas and P. Hinow, On a size-structured two-phase population model with infinite states-at-birth,, Positivity, 14 (2010), 501. Google Scholar

[17]

A. Grabosch and H. J. A. M. Heijmans, Cauchy problems with state-dependent time evolution,, Japan J. Appl. Math., 7 (1990), 433. Google Scholar

[18]

M. E. Gurtin and R. C. MacCamy, Non-linear age-dependent population dynamics,, Arch. Rational Mech. Anal., 54 (1974), 281. Google Scholar

[19]

S. M. Henson and J. M. Cushing, Hierarchical models of intra-specific competition: Scramble versus contest,, J. Math. Biol., 34 (1996), 755. Google Scholar

[20]

S. R.-J. Jang and J. M. Cushing, A discrete hierarchical model ofintra-specific competition,, J. Math. Anal. Appl., 280 (2003), 102. Google Scholar

[21]

S. R.-J. Jang and J. M. Cushing, Dynamics of hierarchical models in discrete-time,, J. Difference Equ. Appl., 11 (2005), 95. Google Scholar

[22]

N. Kato, A principle of linearized stability for nonlinear evolution equations,, Trans. Amer. Math. Soc., 347 (1995), 2851. Google Scholar

[23]

J. A. J. Metz and O. Diekmann, Age dependence,, in, 68 (1983). Google Scholar

[24]

J. Prüss, On the qualitative behavior of populations with age-specific interactions,, Comput. Math. Appl., 9 (1983), 327. Google Scholar

[25]

S. L. Tucker and S. O. Zimmerman, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables,, SIAM J. Appl. Math., 48 (1988), 549. Google Scholar

[26]

Ch. Walker, Global bifurcation of positive equilibria in nonlinear population models,, J. Diff. Eq., 248 (2010), 1756. Google Scholar

[27]

G. F. Webb, "Theory of Nonlinear Age-Dependent Population Dynamics,", Monographs and Textbooks in Pure and Applied Mathematics, 89 (1985). Google Scholar

[28]

K. Yosida, "Functional Analysis,", Reprint of the sixth (1980) edition, (1980). Google Scholar

[1]

Àngel Calsina, József Z. Farkas. Boundary perturbations and steady states of structured populations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6675-6691. doi: 10.3934/dcdsb.2019162

[2]

Anton Arnold, Laurent Desvillettes, Céline Prévost. Existence of nontrivial steady states for populations structured with respect to space and a continuous trait. Communications on Pure & Applied Analysis, 2012, 11 (1) : 83-96. doi: 10.3934/cpaa.2012.11.83

[3]

Victoria Martín-Márquez, Simeon Reich, Shoham Sabach. Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1043-1063. doi: 10.3934/dcdss.2013.6.1043

[4]

Victoria Martín-Márquez, Simeon Reich, Shoham Sabach. Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1043-1063. doi: 10.3934/dcdss.2013.6.1043

[5]

Inom Mirzaev, David M. Bortz. A numerical framework for computing steady states of structured population models and their stability. Mathematical Biosciences & Engineering, 2017, 14 (4) : 933-952. doi: 10.3934/mbe.2017049

[6]

Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067

[7]

Bertrand Lods, Mustapha Mokhtar-Kharroubi, Mohammed Sbihi. Spectral properties of general advection operators and weighted translation semigroups. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1469-1492. doi: 10.3934/cpaa.2009.8.1469

[8]

Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917

[9]

Anna Cima, Armengol Gasull, Víctor Mañosa. Parrondo's dynamic paradox for the stability of non-hyperbolic fixed points. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 889-904. doi: 10.3934/dcds.2018038

[10]

Azmy S. Ackleh, H.T. Banks, Keng Deng, Shuhua Hu. Parameter Estimation in a Coupled System of Nonlinear Size-Structured Populations. Mathematical Biosciences & Engineering, 2005, 2 (2) : 289-315. doi: 10.3934/mbe.2005.2.289

[11]

Qian Xu. The stability of bifurcating steady states of several classes of chemotaxis systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 231-248. doi: 10.3934/dcdsb.2015.20.231

[12]

Yongli Cai, Yun Kang, Weiming Wang. Global stability of the steady states of an epidemic model incorporating intervention strategies. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1071-1089. doi: 10.3934/mbe.2017056

[13]

Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 849-865. doi: 10.3934/dcdsb.2011.15.849

[14]

Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568-572. doi: 10.3934/proc.2007.2007.568

[15]

John Franks, Michael Handel, Kamlesh Parwani. Fixed points of Abelian actions. Journal of Modern Dynamics, 2007, 1 (3) : 443-464. doi: 10.3934/jmd.2007.1.443

[16]

Dieter Schmidt, Lucas Valeriano. Nonlinear stability of stationary points in the problem of Robe. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1917-1936. doi: 10.3934/dcdsb.2016029

[17]

Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. On the stability of a nonlinear maturity structured model of cellular proliferation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 501-522. doi: 10.3934/dcds.2005.12.501

[18]

Andrew J. Steyer, Erik S. Van Vleck. Underlying one-step methods and nonautonomous stability of general linear methods. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2859-2877. doi: 10.3934/dcdsb.2018108

[19]

Kimun Ryu, Inkyung Ahn. Positive steady--states for two interacting species models with linear self-cross diffusions. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1049-1061. doi: 10.3934/dcds.2003.9.1049

[20]

Karl Peter Hadeler. Structured populations with diffusion in state space. Mathematical Biosciences & Engineering, 2010, 7 (1) : 37-49. doi: 10.3934/mbe.2010.7.37

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]