[1]
|
A. S. Ackleh, K. Deng and S. Hu, A quasilinear hierarchical size-structured model: Well-posedness andapproximation, Appl. Math. Optim., 51 (2005), 35-59.
|
[2]
|
A. S. Ackleh and K. Ito, Measure-valued solutions for a hierarchically size-structured population, J. Differential Equations, 217 (2005), 431-455.
|
[3]
|
R. A. Adams and J. J. F. Fournier, "Sobolev Spaces," 2nd edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.
|
[4]
|
H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.
|
[5]
|
W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, "One-Parameter Semigroups of Positive Operators," Lecture Notes in Mathematics, 1184, Springer-Verlag, Berlin, 1986.
|
[6]
|
À. Calsina and J. Saldań, Asymptotic behavior of a model ofhierarchically structured population dynamics, J. Math. Biol., 35 (1997), 967-987.
|
[7]
|
À. Calsina and J. Saldañ, Basic theory for a class of models ofhierarchically structured population dynamics with distributed states in the recruitment, Math. Models Methods Appl. Sci., 16 (2006), 1695-1722.
|
[8]
|
J. M. Cushing, The dynamics of hierarchical age-structured populations, J. Math. Biol., 32 (1994), 705-729.
|
[9]
|
J. M. Cushing, "An Introduction to Structured Population Dynamics," CBMS-NSF Regional Conference Series in Applied Mathematics, 71, SIAM, Philadelphia, PA, 1998.
|
[10]
|
K. Deimling, "Nonlinear Functional Analysis," Springer-Verlag, Berlin, 1985.
|
[11]
|
K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations," Graduate Texts in Mathematics, 194, Springer-Verlag, New York 2000.
|
[12]
|
J. Z. Farkas, D. M. Green and P. Hinow, Semigroup analysis ofstructured parasite populations, Math. Model. Nat. Phenom., 5 (2010), 94-114.
|
[13]
|
J. Z. Farkas and T. Hagen, Stability and regularity results for asize-structured population model, J. Math. Anal. Appl., 328 (2007), 119-136.
|
[14]
|
J. Z. Farkas and T. Hagen, Asymptotic analysis of a size-structured cannibalism model with infinite dimensional environmental feedback, Commun. Pure Appl. Anal., 8 (2009), 1825-1839.
|
[15]
|
J. Z. Farkas and T. Hagen, Hierarchical size-structured populations: The linearized semigroup approach, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 17 (2010), 639-657.
|
[16]
|
J. Z. Farkas and P. Hinow, On a size-structured two-phase population model with infinite states-at-birth, Positivity, 14 (2010), 501-514.
|
[17]
|
A. Grabosch and H. J. A. M. Heijmans, Cauchy problems with state-dependent time evolution, Japan J. Appl. Math., 7 (1990), 433-457.
|
[18]
|
M. E. Gurtin and R. C. MacCamy, Non-linear age-dependent population dynamics, Arch. Rational Mech. Anal., 54 (1974), 281-300.
|
[19]
|
S. M. Henson and J. M. Cushing, Hierarchical models of intra-specific competition: Scramble versus contest, J. Math. Biol., 34 (1996), 755-772.
|
[20]
|
S. R.-J. Jang and J. M. Cushing, A discrete hierarchical model ofintra-specific competition, J. Math. Anal. Appl., 280 (2003), 102-122.
|
[21]
|
S. R.-J. Jang and J. M. Cushing, Dynamics of hierarchical models in discrete-time, J. Difference Equ. Appl., 11 (2005), 95-115.
|
[22]
|
N. Kato, A principle of linearized stability for nonlinear evolution equations, Trans. Amer. Math. Soc., 347 (1995), 2851-2868.
|
[23]
|
J. A. J. Metz and O. Diekmann, Age dependence, in "The Dynamics of Physiologically Structured Populations" (Amsterdam, 1983), Lecture Notes in Biomath., 68, Springer, Berlin, 1986.
|
[24]
|
J. Prüss, On the qualitative behavior of populations with age-specific interactions, Comput. Math. Appl., 9 (1983), 327-339.
|
[25]
|
S. L. Tucker and S. O. Zimmerman, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables, SIAM J. Appl. Math., 48 (1988), 549-591.
|
[26]
|
Ch. Walker, Global bifurcation of positive equilibria in nonlinear population models, J. Diff. Eq., 248 (2010), 1756-1776.
|
[27]
|
G. F. Webb, "Theory of Nonlinear Age-Dependent Population Dynamics," Monographs and Textbooks in Pure and Applied Mathematics, 89, Marcel Dekker, Inc., New York, 1985.
|
[28]
|
K. Yosida, "Functional Analysis," Reprint of the sixth (1980) edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.
|