
Previous Article
Exact travelling wave solutions of threespecies competitiondiffusion systems
 DCDSB Home
 This Issue

Next Article
A three dimensional model of wound healing: Analysis and computation
Steady states in hierarchical structured populations with distributed states at birth
1.  Department of Computing Science and Mathematics, University of Stirling, Stirling, FK9 4LA, United Kingdom 
2.  Department of Mathematical Sciences, University of Wisconsin – Milwaukee, P.O. Box 413, Milwaukee, WI 532010413 
References:
[1] 
A. S. Ackleh, K. Deng and S. Hu, A quasilinear hierarchical sizestructured model: Wellposedness andapproximation,, Appl. Math. Optim., 51 (2005), 35. Google Scholar 
[2] 
A. S. Ackleh and K. Ito, Measurevalued solutions for a hierarchically sizestructured population,, J. Differential Equations, 217 (2005), 431. Google Scholar 
[3] 
R. A. Adams and J. J. F. Fournier, "Sobolev Spaces," 2^{nd} edition,, Pure and Applied Mathematics (Amsterdam), 140 (2003). Google Scholar 
[4] 
H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces,, SIAM Rev., 18 (1976), 620. Google Scholar 
[5] 
W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, "OneParameter Semigroups of Positive Operators,", Lecture Notes in Mathematics, 1184 (1986). Google Scholar 
[6] 
À. Calsina and J. Saldań, Asymptotic behavior of a model ofhierarchically structured population dynamics,, J. Math. Biol., 35 (1997), 967. Google Scholar 
[7] 
À. Calsina and J. Saldañ, Basic theory for a class of models ofhierarchically structured population dynamics with distributed states in the recruitment,, Math. Models Methods Appl. Sci., 16 (2006), 1695. Google Scholar 
[8] 
J. M. Cushing, The dynamics of hierarchical agestructured populations,, J. Math. Biol., 32 (1994), 705. Google Scholar 
[9] 
J. M. Cushing, "An Introduction to Structured Population Dynamics,", CBMSNSF Regional Conference Series in Applied Mathematics, 71 (1998). Google Scholar 
[10] 
K. Deimling, "Nonlinear Functional Analysis,", SpringerVerlag, (1985). Google Scholar 
[11] 
K.J. Engel and R. Nagel, "OneParameter Semigroups for Linear Evolution Equations,", Graduate Texts in Mathematics, 194 (2000). Google Scholar 
[12] 
J. Z. Farkas, D. M. Green and P. Hinow, Semigroup analysis ofstructured parasite populations,, Math. Model. Nat. Phenom., 5 (2010), 94. Google Scholar 
[13] 
J. Z. Farkas and T. Hagen, Stability and regularity results for asizestructured population model,, J. Math. Anal. Appl., 328 (2007), 119. Google Scholar 
[14] 
J. Z. Farkas and T. Hagen, Asymptotic analysis of a sizestructured cannibalism model with infinite dimensional environmental feedback,, Commun. Pure Appl. Anal., 8 (2009), 1825. Google Scholar 
[15] 
J. Z. Farkas and T. Hagen, Hierarchical sizestructured populations: The linearized semigroup approach,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 17 (2010), 639. Google Scholar 
[16] 
J. Z. Farkas and P. Hinow, On a sizestructured twophase population model with infinite statesatbirth,, Positivity, 14 (2010), 501. Google Scholar 
[17] 
A. Grabosch and H. J. A. M. Heijmans, Cauchy problems with statedependent time evolution,, Japan J. Appl. Math., 7 (1990), 433. Google Scholar 
[18] 
M. E. Gurtin and R. C. MacCamy, Nonlinear agedependent population dynamics,, Arch. Rational Mech. Anal., 54 (1974), 281. Google Scholar 
[19] 
S. M. Henson and J. M. Cushing, Hierarchical models of intraspecific competition: Scramble versus contest,, J. Math. Biol., 34 (1996), 755. Google Scholar 
[20] 
S. R.J. Jang and J. M. Cushing, A discrete hierarchical model ofintraspecific competition,, J. Math. Anal. Appl., 280 (2003), 102. Google Scholar 
[21] 
S. R.J. Jang and J. M. Cushing, Dynamics of hierarchical models in discretetime,, J. Difference Equ. Appl., 11 (2005), 95. Google Scholar 
[22] 
N. Kato, A principle of linearized stability for nonlinear evolution equations,, Trans. Amer. Math. Soc., 347 (1995), 2851. Google Scholar 
[23] 
J. A. J. Metz and O. Diekmann, Age dependence,, in, 68 (1983). Google Scholar 
[24] 
J. Prüss, On the qualitative behavior of populations with agespecific interactions,, Comput. Math. Appl., 9 (1983), 327. Google Scholar 
[25] 
S. L. Tucker and S. O. Zimmerman, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables,, SIAM J. Appl. Math., 48 (1988), 549. Google Scholar 
[26] 
Ch. Walker, Global bifurcation of positive equilibria in nonlinear population models,, J. Diff. Eq., 248 (2010), 1756. Google Scholar 
[27] 
G. F. Webb, "Theory of Nonlinear AgeDependent Population Dynamics,", Monographs and Textbooks in Pure and Applied Mathematics, 89 (1985). Google Scholar 
[28] 
K. Yosida, "Functional Analysis,", Reprint of the sixth (1980) edition, (1980). Google Scholar 
show all references
References:
[1] 
A. S. Ackleh, K. Deng and S. Hu, A quasilinear hierarchical sizestructured model: Wellposedness andapproximation,, Appl. Math. Optim., 51 (2005), 35. Google Scholar 
[2] 
A. S. Ackleh and K. Ito, Measurevalued solutions for a hierarchically sizestructured population,, J. Differential Equations, 217 (2005), 431. Google Scholar 
[3] 
R. A. Adams and J. J. F. Fournier, "Sobolev Spaces," 2^{nd} edition,, Pure and Applied Mathematics (Amsterdam), 140 (2003). Google Scholar 
[4] 
H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces,, SIAM Rev., 18 (1976), 620. Google Scholar 
[5] 
W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, "OneParameter Semigroups of Positive Operators,", Lecture Notes in Mathematics, 1184 (1986). Google Scholar 
[6] 
À. Calsina and J. Saldań, Asymptotic behavior of a model ofhierarchically structured population dynamics,, J. Math. Biol., 35 (1997), 967. Google Scholar 
[7] 
À. Calsina and J. Saldañ, Basic theory for a class of models ofhierarchically structured population dynamics with distributed states in the recruitment,, Math. Models Methods Appl. Sci., 16 (2006), 1695. Google Scholar 
[8] 
J. M. Cushing, The dynamics of hierarchical agestructured populations,, J. Math. Biol., 32 (1994), 705. Google Scholar 
[9] 
J. M. Cushing, "An Introduction to Structured Population Dynamics,", CBMSNSF Regional Conference Series in Applied Mathematics, 71 (1998). Google Scholar 
[10] 
K. Deimling, "Nonlinear Functional Analysis,", SpringerVerlag, (1985). Google Scholar 
[11] 
K.J. Engel and R. Nagel, "OneParameter Semigroups for Linear Evolution Equations,", Graduate Texts in Mathematics, 194 (2000). Google Scholar 
[12] 
J. Z. Farkas, D. M. Green and P. Hinow, Semigroup analysis ofstructured parasite populations,, Math. Model. Nat. Phenom., 5 (2010), 94. Google Scholar 
[13] 
J. Z. Farkas and T. Hagen, Stability and regularity results for asizestructured population model,, J. Math. Anal. Appl., 328 (2007), 119. Google Scholar 
[14] 
J. Z. Farkas and T. Hagen, Asymptotic analysis of a sizestructured cannibalism model with infinite dimensional environmental feedback,, Commun. Pure Appl. Anal., 8 (2009), 1825. Google Scholar 
[15] 
J. Z. Farkas and T. Hagen, Hierarchical sizestructured populations: The linearized semigroup approach,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 17 (2010), 639. Google Scholar 
[16] 
J. Z. Farkas and P. Hinow, On a sizestructured twophase population model with infinite statesatbirth,, Positivity, 14 (2010), 501. Google Scholar 
[17] 
A. Grabosch and H. J. A. M. Heijmans, Cauchy problems with statedependent time evolution,, Japan J. Appl. Math., 7 (1990), 433. Google Scholar 
[18] 
M. E. Gurtin and R. C. MacCamy, Nonlinear agedependent population dynamics,, Arch. Rational Mech. Anal., 54 (1974), 281. Google Scholar 
[19] 
S. M. Henson and J. M. Cushing, Hierarchical models of intraspecific competition: Scramble versus contest,, J. Math. Biol., 34 (1996), 755. Google Scholar 
[20] 
S. R.J. Jang and J. M. Cushing, A discrete hierarchical model ofintraspecific competition,, J. Math. Anal. Appl., 280 (2003), 102. Google Scholar 
[21] 
S. R.J. Jang and J. M. Cushing, Dynamics of hierarchical models in discretetime,, J. Difference Equ. Appl., 11 (2005), 95. Google Scholar 
[22] 
N. Kato, A principle of linearized stability for nonlinear evolution equations,, Trans. Amer. Math. Soc., 347 (1995), 2851. Google Scholar 
[23] 
J. A. J. Metz and O. Diekmann, Age dependence,, in, 68 (1983). Google Scholar 
[24] 
J. Prüss, On the qualitative behavior of populations with agespecific interactions,, Comput. Math. Appl., 9 (1983), 327. Google Scholar 
[25] 
S. L. Tucker and S. O. Zimmerman, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables,, SIAM J. Appl. Math., 48 (1988), 549. Google Scholar 
[26] 
Ch. Walker, Global bifurcation of positive equilibria in nonlinear population models,, J. Diff. Eq., 248 (2010), 1756. Google Scholar 
[27] 
G. F. Webb, "Theory of Nonlinear AgeDependent Population Dynamics,", Monographs and Textbooks in Pure and Applied Mathematics, 89 (1985). Google Scholar 
[28] 
K. Yosida, "Functional Analysis,", Reprint of the sixth (1980) edition, (1980). Google Scholar 
[1] 
Àngel Calsina, József Z. Farkas. Boundary perturbations and steady states of structured populations. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 117. doi: 10.3934/dcdsb.2019162 
[2] 
Anton Arnold, Laurent Desvillettes, Céline Prévost. Existence of nontrivial steady states for populations structured with respect to space and a continuous trait. Communications on Pure & Applied Analysis, 2012, 11 (1) : 8396. doi: 10.3934/cpaa.2012.11.83 
[3] 
Victoria MartínMárquez, Simeon Reich, Shoham Sabach. Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete & Continuous Dynamical Systems  S, 2013, 6 (4) : 10431063. doi: 10.3934/dcdss.2013.6.1043 
[4] 
Victoria MartínMárquez, Simeon Reich, Shoham Sabach. Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete & Continuous Dynamical Systems  S, 2013, 6 (4) : 10431063. doi: 10.3934/dcdss.2013.6.1043 
[5] 
Inom Mirzaev, David M. Bortz. A numerical framework for computing steady states of structured population models and their stability. Mathematical Biosciences & Engineering, 2017, 14 (4) : 933952. doi: 10.3934/mbe.2017049 
[6] 
Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semilinear Schrödinger and KleinGordon equations with fractional dispersion. Communications on Pure & Applied Analysis, 2018, 17 (4) : 13711385. doi: 10.3934/cpaa.2018067 
[7] 
Bertrand Lods, Mustapha MokhtarKharroubi, Mohammed Sbihi. Spectral properties of general advection operators and weighted translation semigroups. Communications on Pure & Applied Analysis, 2009, 8 (5) : 14691492. doi: 10.3934/cpaa.2009.8.1469 
[8] 
Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete & Continuous Dynamical Systems  A, 2011, 30 (3) : 917944. doi: 10.3934/dcds.2011.30.917 
[9] 
Anna Cima, Armengol Gasull, Víctor Mañosa. Parrondo's dynamic paradox for the stability of nonhyperbolic fixed points. Discrete & Continuous Dynamical Systems  A, 2018, 38 (2) : 889904. doi: 10.3934/dcds.2018038 
[10] 
Azmy S. Ackleh, H.T. Banks, Keng Deng, Shuhua Hu. Parameter Estimation in a Coupled System of Nonlinear SizeStructured Populations. Mathematical Biosciences & Engineering, 2005, 2 (2) : 289315. doi: 10.3934/mbe.2005.2.289 
[11] 
Qian Xu. The stability of bifurcating steady states of several classes of chemotaxis systems. Discrete & Continuous Dynamical Systems  B, 2015, 20 (1) : 231248. doi: 10.3934/dcdsb.2015.20.231 
[12] 
Yongli Cai, Yun Kang, Weiming Wang. Global stability of the steady states of an epidemic model incorporating intervention strategies. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 10711089. doi: 10.3934/mbe.2017056 
[13] 
Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete & Continuous Dynamical Systems  B, 2011, 15 (3) : 849865. doi: 10.3934/dcdsb.2011.15.849 
[14] 
Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568572. doi: 10.3934/proc.2007.2007.568 
[15] 
John Franks, Michael Handel, Kamlesh Parwani. Fixed points of Abelian actions. Journal of Modern Dynamics, 2007, 1 (3) : 443464. doi: 10.3934/jmd.2007.1.443 
[16] 
Dieter Schmidt, Lucas Valeriano. Nonlinear stability of stationary points in the problem of Robe. Discrete & Continuous Dynamical Systems  B, 2016, 21 (6) : 19171936. doi: 10.3934/dcdsb.2016029 
[17] 
Mostafa Adimy, Fabien Crauste, Laurent PujoMenjouet. On the stability of a nonlinear maturity structured model of cellular proliferation. Discrete & Continuous Dynamical Systems  A, 2005, 12 (3) : 501522. doi: 10.3934/dcds.2005.12.501 
[18] 
Andrew J. Steyer, Erik S. Van Vleck. Underlying onestep methods and nonautonomous stability of general linear methods. Discrete & Continuous Dynamical Systems  B, 2018, 23 (7) : 28592877. doi: 10.3934/dcdsb.2018108 
[19] 
Kimun Ryu, Inkyung Ahn. Positive steadystates for two interacting species models with linear selfcross diffusions. Discrete & Continuous Dynamical Systems  A, 2003, 9 (4) : 10491061. doi: 10.3934/dcds.2003.9.1049 
[20] 
Cesare Bracco, Annalisa Buffa, Carlotta Giannelli, Rafael Vázquez. Adaptive isogeometric methods with hierarchical splines: An overview. Discrete & Continuous Dynamical Systems  A, 2019, 39 (1) : 241261. doi: 10.3934/dcds.2019010 
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]