[1]

A. S. Ackleh, K. Deng and S. Hu, A quasilinear hierarchical sizestructured model: Wellposedness andapproximation, Appl. Math. Optim., 51 (2005), 3559.

[2]

A. S. Ackleh and K. Ito, Measurevalued solutions for a hierarchically sizestructured population, J. Differential Equations, 217 (2005), 431455.

[3]

R. A. Adams and J. J. F. Fournier, "Sobolev Spaces," 2^{nd} edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.

[4]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620709.

[5]

W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander and U. Schlotterbeck, "OneParameter Semigroups of Positive Operators," Lecture Notes in Mathematics, 1184, SpringerVerlag, Berlin, 1986.

[6]

À. Calsina and J. Saldań, Asymptotic behavior of a model ofhierarchically structured population dynamics, J. Math. Biol., 35 (1997), 967987.

[7]

À. Calsina and J. Saldañ, Basic theory for a class of models ofhierarchically structured population dynamics with distributed states in the recruitment, Math. Models Methods Appl. Sci., 16 (2006), 16951722.

[8]

J. M. Cushing, The dynamics of hierarchical agestructured populations, J. Math. Biol., 32 (1994), 705729.

[9]

J. M. Cushing, "An Introduction to Structured Population Dynamics," CBMSNSF Regional Conference Series in Applied Mathematics, 71, SIAM, Philadelphia, PA, 1998.

[10]

K. Deimling, "Nonlinear Functional Analysis," SpringerVerlag, Berlin, 1985.

[11]

K.J. Engel and R. Nagel, "OneParameter Semigroups for Linear Evolution Equations," Graduate Texts in Mathematics, 194, SpringerVerlag, New York 2000.

[12]

J. Z. Farkas, D. M. Green and P. Hinow, Semigroup analysis ofstructured parasite populations, Math. Model. Nat. Phenom., 5 (2010), 94114.

[13]

J. Z. Farkas and T. Hagen, Stability and regularity results for asizestructured population model, J. Math. Anal. Appl., 328 (2007), 119136.

[14]

J. Z. Farkas and T. Hagen, Asymptotic analysis of a sizestructured cannibalism model with infinite dimensional environmental feedback, Commun. Pure Appl. Anal., 8 (2009), 18251839.

[15]

J. Z. Farkas and T. Hagen, Hierarchical sizestructured populations: The linearized semigroup approach, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 17 (2010), 639657.

[16]

J. Z. Farkas and P. Hinow, On a sizestructured twophase population model with infinite statesatbirth, Positivity, 14 (2010), 501514.

[17]

A. Grabosch and H. J. A. M. Heijmans, Cauchy problems with statedependent time evolution, Japan J. Appl. Math., 7 (1990), 433457.

[18]

M. E. Gurtin and R. C. MacCamy, Nonlinear agedependent population dynamics, Arch. Rational Mech. Anal., 54 (1974), 281300.

[19]

S. M. Henson and J. M. Cushing, Hierarchical models of intraspecific competition: Scramble versus contest, J. Math. Biol., 34 (1996), 755772.

[20]

S. R.J. Jang and J. M. Cushing, A discrete hierarchical model ofintraspecific competition, J. Math. Anal. Appl., 280 (2003), 102122.

[21]

S. R.J. Jang and J. M. Cushing, Dynamics of hierarchical models in discretetime, J. Difference Equ. Appl., 11 (2005), 95115.

[22]

N. Kato, A principle of linearized stability for nonlinear evolution equations, Trans. Amer. Math. Soc., 347 (1995), 28512868.

[23]

J. A. J. Metz and O. Diekmann, Age dependence, in "The Dynamics of Physiologically Structured Populations" (Amsterdam, 1983), Lecture Notes in Biomath., 68, Springer, Berlin, 1986.

[24]

J. Prüss, On the qualitative behavior of populations with agespecific interactions, Comput. Math. Appl., 9 (1983), 327339.

[25]

S. L. Tucker and S. O. Zimmerman, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables, SIAM J. Appl. Math., 48 (1988), 549591.

[26]

Ch. Walker, Global bifurcation of positive equilibria in nonlinear population models, J. Diff. Eq., 248 (2010), 17561776.

[27]

G. F. Webb, "Theory of Nonlinear AgeDependent Population Dynamics," Monographs and Textbooks in Pure and Applied Mathematics, 89, Marcel Dekker, Inc., New York, 1985.

[28]

K. Yosida, "Functional Analysis," Reprint of the sixth (1980) edition, Classics in Mathematics, SpringerVerlag, Berlin, 1995.
