[1]
|
S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Communications on Pure and Applied Mathematics, 17 (1964), 35-92.
|
[2]
|
A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biol., 60 (1998), 857-899.
|
[3]
|
H. M. Byrne, M. A. J. Chaplain, D. L. Evans and I. Hopkinson, Mathematical modelling of angiogenesis in wound healing: Comparison of theory and experiment, J. Theor. Med., 2 (2000), 175-197.
|
[4]
|
X. Chen and A. Friedman, A free boundary problem for an elliptic-hyperbolic system: An application to tumor growth, SIAM Journal on Mathematical Analysis, 35 (2003), 974-986.
|
[5]
|
R. F. Diegelmann and M. C. Evans, Wound healing: An overview of acute, fibrotic and delayed healing, Front. Biosci., 9 (2004), 283-289.
|
[6]
|
Y. Dor, V. Djonov and E. Keshet, Induction of vascular networks in adult organs: Implications to proangiogenic therapy, Annals of the New York Academy of Sciences, 995 (2003), 208-216.
|
[7]
|
Y. Dor, V. Djonov and E. Keshet, Making vascular networks in the adult: Branching morphogenesis without a roadmap, Trends in Cell Biology, 13 (2003), 131-136.
|
[8]
|
A. Friedman, A multiscale tumor model, Interfaces and Free Boundaries, 10 (2008), 245-262.
|
[9]
|
A. Friedman, B. Hu and C. Xue, Analysis of a mathematical model of ischemic cutaneous wounds, SIAM J. Math. Anal., 42 (2010), 2013-2040.
|
[10]
|
A. Friedman and G. Lolas, Analysis of a mathematical model of tumor lymphangiogenesis, Math. Models Methods Appl. Sci., 15 (2005), 95-107.
|
[11]
|
A. Friedman and C. Xue, A mathematical model for chronic wounds, Mathematical Biosciences and Engineering, 8 (2011), 253-261.
|
[12]
|
S. R. McDougall, A. R. A. Anderson, M. A. J. Chaplain and J. A. Sherratt, Mathematical modelling of flow through vascular networks: Implications for tumour-induced angiogenesis and chemotherapy strategies, Bull. Math. Biol., 64 (2002), 673-702.
|
[13]
|
N. B. Menke, K. R. Ward, T. M. Witten, D. G. Bonchev and R. F. Diegelmann, Impaired wound healing, Clinics in Dermatology, 25 (2007), 19-25.
|
[14]
|
G. Pettet, M. A. J. Chaplain, D. L. S. Mcelwain and H. M. Byrne, On the role of angiogenesis in wound healing, Proc. R. Soc. Lond. B, 263 (1996), 1487-1493.
|
[15]
|
G. J. Pettet, H. M. Byrne, D. L. S. Mcelwain and J. Norbury, A model of wound-healing angiogenesis in soft tissue, Mathematical Biosciences, 136 (1996), 35-63.
|
[16]
|
S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould and C. K. Sen, Characterization of a preclinical model of chronic ischemic wound, Physiological Genomics, 37 (2009), 211.
|
[17]
|
R. C. Schugart, A. Friedman, R. Zhao and C. K. Sen, Wound angiogenesis as a function of tissue oxygen tension: A mathematical model, PNAS, 105 (2008), 2628-2633.
|
[18]
|
C. K. Sen, G. M. Gordillo, S. R., R. Kirsner, L. Lambert, T. K Hunt, F. Gottrup, G. C. Gurtner and M. T. Longaker, Human skin wounds: A major and snowballing threat to public health and the economy, Wound Repair Regen., 17 (2009), 763-771.
|
[19]
|
A. J. Singer and R. A. Clark, Cutaneous wound healing, N. Engl. J. Med., 341 (1999), 738-746.
|
[20]
|
A. Stephanou, S. R. McDougall, A. R. A. Anderson and M. A. J. Chaplain, Mathematical modelling of flow in 2D and 3D vascular networks: Applications to anti-angiogenic and chemotherapeutic drug strategies, Mathematical and Computer Modelling, 41 (2005), 1137-1156.
|
[21]
|
F. Werdin, M. Tennenhaus, H. Schaller and H. Rennekampff, Evidence-based management strategies for treatment of chronic wounds, Eplasty, 9 (2009), e19.
|
[22]
|
C. Xue, A. Friedman and C. K. Sen, A mathematical model of ischemic cutaneous wounds, PNAS, 106 (2009), 16782-16787.
|