[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Communications on Pure and Applied Mathematics, 17 (1964), 3592.

[2]

A. R. A. Anderson and M. A. J. Chaplain, Continuous and discrete mathematical models of tumorinduced angiogenesis, Bull. Math. Biol., 60 (1998), 857899.

[3]

H. M. Byrne, M. A. J. Chaplain, D. L. Evans and I. Hopkinson, Mathematical modelling of angiogenesis in wound healing: Comparison of theory and experiment, J. Theor. Med., 2 (2000), 175197.

[4]

X. Chen and A. Friedman, A free boundary problem for an elliptichyperbolic system: An application to tumor growth, SIAM Journal on Mathematical Analysis, 35 (2003), 974986.

[5]

R. F. Diegelmann and M. C. Evans, Wound healing: An overview of acute, fibrotic and delayed healing, Front. Biosci., 9 (2004), 283289.

[6]

Y. Dor, V. Djonov and E. Keshet, Induction of vascular networks in adult organs: Implications to proangiogenic therapy, Annals of the New York Academy of Sciences, 995 (2003), 208216.

[7]

Y. Dor, V. Djonov and E. Keshet, Making vascular networks in the adult: Branching morphogenesis without a roadmap, Trends in Cell Biology, 13 (2003), 131136.

[8]

A. Friedman, A multiscale tumor model, Interfaces and Free Boundaries, 10 (2008), 245262.

[9]

A. Friedman, B. Hu and C. Xue, Analysis of a mathematical model of ischemic cutaneous wounds, SIAM J. Math. Anal., 42 (2010), 20132040.

[10]

A. Friedman and G. Lolas, Analysis of a mathematical model of tumor lymphangiogenesis, Math. Models Methods Appl. Sci., 15 (2005), 95107.

[11]

A. Friedman and C. Xue, A mathematical model for chronic wounds, Mathematical Biosciences and Engineering, 8 (2011), 253261.

[12]

S. R. McDougall, A. R. A. Anderson, M. A. J. Chaplain and J. A. Sherratt, Mathematical modelling of flow through vascular networks: Implications for tumourinduced angiogenesis and chemotherapy strategies, Bull. Math. Biol., 64 (2002), 673702.

[13]

N. B. Menke, K. R. Ward, T. M. Witten, D. G. Bonchev and R. F. Diegelmann, Impaired wound healing, Clinics in Dermatology, 25 (2007), 1925.

[14]

G. Pettet, M. A. J. Chaplain, D. L. S. Mcelwain and H. M. Byrne, On the role of angiogenesis in wound healing, Proc. R. Soc. Lond. B, 263 (1996), 14871493.

[15]

G. J. Pettet, H. M. Byrne, D. L. S. Mcelwain and J. Norbury, A model of woundhealing angiogenesis in soft tissue, Mathematical Biosciences, 136 (1996), 3563.

[16]

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould and C. K. Sen, Characterization of a preclinical model of chronic ischemic wound, Physiological Genomics, 37 (2009), 211.

[17]

R. C. Schugart, A. Friedman, R. Zhao and C. K. Sen, Wound angiogenesis as a function of tissue oxygen tension: A mathematical model, PNAS, 105 (2008), 26282633.

[18]

C. K. Sen, G. M. Gordillo, S. R., R. Kirsner, L. Lambert, T. K Hunt, F. Gottrup, G. C. Gurtner and M. T. Longaker, Human skin wounds: A major and snowballing threat to public health and the economy, Wound Repair Regen., 17 (2009), 763771.

[19]

A. J. Singer and R. A. Clark, Cutaneous wound healing, N. Engl. J. Med., 341 (1999), 738746.

[20]

A. Stephanou, S. R. McDougall, A. R. A. Anderson and M. A. J. Chaplain, Mathematical modelling of flow in 2D and 3D vascular networks: Applications to antiangiogenic and chemotherapeutic drug strategies, Mathematical and Computer Modelling, 41 (2005), 11371156.

[21]

F. Werdin, M. Tennenhaus, H. Schaller and H. Rennekampff, Evidencebased management strategies for treatment of chronic wounds, Eplasty, 9 (2009), e19.

[22]

C. Xue, A. Friedman and C. K. Sen, A mathematical model of ischemic cutaneous wounds, PNAS, 106 (2009), 1678216787.
