• Previous Article
    Global stability for a HIV-1 infection model with cell-mediated immune response and intracellular delay
  • DCDS-B Home
  • This Issue
  • Next Article
    A simple regulatory circuit that can simultaneously generate excitability of two different mechanisms
January  2012, 17(1): 283-295. doi: 10.3934/dcdsb.2012.17.283

A periodic reaction-diffusion model with a quiescent stage

1. 

Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan

Received  June 2010 Revised  June 2011 Published  October 2011

In this paper, we investigate the asymptotic behaviour for a periodic reaction-diffusion model with a quiescent stage. By appealing to the theory of asymptotic speeds of spread and traveling waves for monotone periodic semiflow, we establish the existence of the spreading speed and show that it coincides with the minimal wave speed for monotone periodic traveling waves. Finally, we consider the case where the spatial domain is bounded. A threshold result on the global attractivity of either zero or a positive periodic solution are established.
Citation: Feng-Bin Wang. A periodic reaction-diffusion model with a quiescent stage. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 283-295. doi: 10.3934/dcdsb.2012.17.283
References:
[1]

J. Cook, "Dispersive Variability and Invasion Wave Speeds,", unpublished manuscript, (1993).   Google Scholar

[2]

K. Deimling, "Nonlinear Functional Analysis,", Springer-Verlag, (1985).   Google Scholar

[3]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981).   Google Scholar

[4]

J. K. Hale, "Ordinary Differential Equations,", Second edition, (1980).   Google Scholar

[5]

P. Hess, "Periodic-Parabolic Boundary Value Problems and Positivity,", Pitman Res. Notes Math. Series, 247 (1991).   Google Scholar

[6]

K. P. Hadeler and M. A. Lewis, Spatial dynamics of the diffusive logistic equation with a sedentary compartment,, Can. Appl. Math. Q., 10 (2002), 473.   Google Scholar

[7]

J. Jiang, X. Liang and X.-Q. Zhao, Saddle-point behavior for monotone semiflows and reaction-diffusion models,, J. Diff. Eqns., 203 (2004), 313.  doi: 10.1016/j.jde.2004.05.002.  Google Scholar

[8]

X. Liang, Y. Yi and X.-Q. Zhao, Spreading speeds and traveling waves for periodic evolution system,, J. Diff. Eqns., 231 (2006), 57.  doi: 10.1016/j.jde.2006.04.010.  Google Scholar

[9]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857.  doi: 10.1016/j.jfa.2010.04.018.  Google Scholar

[10]

R. H. Martin, "Nonlinear Operators and Differential Equations in Banach Spaces,", New York, (1976).   Google Scholar

[11]

R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems,, Trans. of AMS, 321 (1990), 1.  doi: 10.2307/2001590.  Google Scholar

[12]

J. D. Murray, "Mathematical Biology I, II,", New York, (2003).   Google Scholar

[13]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems,, SIAM. J. Math. Anal., 37 (2005), 251.  doi: 10.1137/S0036141003439173.  Google Scholar

[14]

K. F. Zhang and X.-Q. Zhao, Asymptotic behaviour of a reaction-diffusion model with a quiescent stage,, Proc. R. Soc. A., 463 (2007), 1029.  doi: 10.1098/rspa.2006.1806.  Google Scholar

[15]

X.-Q. Zhao, "Dynamical Systems in Population Biology,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 16 (2003).   Google Scholar

show all references

References:
[1]

J. Cook, "Dispersive Variability and Invasion Wave Speeds,", unpublished manuscript, (1993).   Google Scholar

[2]

K. Deimling, "Nonlinear Functional Analysis,", Springer-Verlag, (1985).   Google Scholar

[3]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981).   Google Scholar

[4]

J. K. Hale, "Ordinary Differential Equations,", Second edition, (1980).   Google Scholar

[5]

P. Hess, "Periodic-Parabolic Boundary Value Problems and Positivity,", Pitman Res. Notes Math. Series, 247 (1991).   Google Scholar

[6]

K. P. Hadeler and M. A. Lewis, Spatial dynamics of the diffusive logistic equation with a sedentary compartment,, Can. Appl. Math. Q., 10 (2002), 473.   Google Scholar

[7]

J. Jiang, X. Liang and X.-Q. Zhao, Saddle-point behavior for monotone semiflows and reaction-diffusion models,, J. Diff. Eqns., 203 (2004), 313.  doi: 10.1016/j.jde.2004.05.002.  Google Scholar

[8]

X. Liang, Y. Yi and X.-Q. Zhao, Spreading speeds and traveling waves for periodic evolution system,, J. Diff. Eqns., 231 (2006), 57.  doi: 10.1016/j.jde.2006.04.010.  Google Scholar

[9]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857.  doi: 10.1016/j.jfa.2010.04.018.  Google Scholar

[10]

R. H. Martin, "Nonlinear Operators and Differential Equations in Banach Spaces,", New York, (1976).   Google Scholar

[11]

R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems,, Trans. of AMS, 321 (1990), 1.  doi: 10.2307/2001590.  Google Scholar

[12]

J. D. Murray, "Mathematical Biology I, II,", New York, (2003).   Google Scholar

[13]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems,, SIAM. J. Math. Anal., 37 (2005), 251.  doi: 10.1137/S0036141003439173.  Google Scholar

[14]

K. F. Zhang and X.-Q. Zhao, Asymptotic behaviour of a reaction-diffusion model with a quiescent stage,, Proc. R. Soc. A., 463 (2007), 1029.  doi: 10.1098/rspa.2006.1806.  Google Scholar

[15]

X.-Q. Zhao, "Dynamical Systems in Population Biology,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 16 (2003).   Google Scholar

[1]

Xiongxiong Bao, Wenxian Shen, Zhongwei Shen. Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems. Communications on Pure & Applied Analysis, 2019, 18 (1) : 361-396. doi: 10.3934/cpaa.2019019

[2]

Nar Rawal, Wenxian Shen, Aijun Zhang. Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1609-1640. doi: 10.3934/dcds.2015.35.1609

[3]

Haiyan Wang, Carlos Castillo-Chavez. Spreading speeds and traveling waves for non-cooperative integro-difference systems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2243-2266. doi: 10.3934/dcdsb.2012.17.2243

[4]

Liang Kong, Tung Nguyen, Wenxian Shen. Effects of localized spatial variations on the uniform persistence and spreading speeds of time periodic two species competition systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1613-1636. doi: 10.3934/cpaa.2019077

[5]

Changbing Hu, Yang Kuang, Bingtuan Li, Hao Liu. Spreading speeds and traveling wave solutions in cooperative integral-differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1663-1684. doi: 10.3934/dcdsb.2015.20.1663

[6]

Weiwei Ding, Xing Liang, Bin Xu. Spreading speeds of $N$-season spatially periodic integro-difference models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3443-3472. doi: 10.3934/dcds.2013.33.3443

[7]

Rachidi B. Salako, Wenxian Shen. Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6189-6225. doi: 10.3934/dcds.2017268

[8]

Wei-Jian Bo, Guo Lin. Asymptotic spreading of time periodic competition diffusion systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3901-3914. doi: 10.3934/dcdsb.2018116

[9]

Guangyu Zhao. Multidimensional periodic traveling waves in infinite cylinders. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1025-1045. doi: 10.3934/dcds.2009.24.1025

[10]

Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043

[11]

Je-Chiang Tsai. Global exponential stability of traveling waves in monotone bistable systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 601-623. doi: 10.3934/dcds.2008.21.601

[12]

Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397

[13]

Bendong Lou. Periodic traveling waves of a mean curvature flow in heterogeneous media. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 231-249. doi: 10.3934/dcds.2009.25.231

[14]

Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993

[15]

Thuc Manh Le, Nguyen Van Minh. Monotone traveling waves in a general discrete model for populations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3221-3234. doi: 10.3934/dcdsb.2017171

[16]

Hans F. Weinberger, Xiao-Qiang Zhao. An extension of the formula for spreading speeds. Mathematical Biosciences & Engineering, 2010, 7 (1) : 187-194. doi: 10.3934/mbe.2010.7.187

[17]

Tung Nguyen, Nar Rawal. Coexistence and extinction in Time-Periodic Volterra-Lotka type systems with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3799-3816. doi: 10.3934/dcdsb.2018080

[18]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[19]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[20]

Zhi-Cheng Wang. Traveling curved fronts in monotone bistable systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2339-2374. doi: 10.3934/dcds.2012.32.2339

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]