• Previous Article
    Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay
  • DCDS-B Home
  • This Issue
  • Next Article
    A passivity-based stability criterion for reaction diffusion systems with interconnected structure
January  2012, 17(1): 325-346. doi: 10.3934/dcdsb.2012.17.325

Generalized Jacobi rational spectral methods with essential imposition of Neumann boundary conditions in unbounded domains

1. 

Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China

Received  August 2010 Revised  February 2011 Published  October 2011

In this paper, we develop several generalized Jacobi rational spectral methods with essential imposition of Neumann boundary conditions for one/two dimensional Neumann problems. Some basic results on the generalized Jacobi rational approximations for Neumann problems are established, which play important roles in the related spectral methods. Three model problems are considered. The convergence of proposed schemes is proved. Numerical results demonstrate their spectral accuracy and efficiency.
Citation: Zhong-Qing Wang, Jing-Xia Wu. Generalized Jacobi rational spectral methods with essential imposition of Neumann boundary conditions in unbounded domains. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 325-346. doi: 10.3934/dcdsb.2012.17.325
References:
[1]

F. Auteri, N. Parolini and L. Quartapelle, Essential imposition of Neumann condition in Galerkin-Legendre elliptic solvers, J. Comput. Phys., 185 (2003), 427-444. doi: 10.1016/S0021-9991(02)00064-5.

[2]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction," Grundlehren der Mathematischen Wissenschaften, No. 223, Spring-Verlag, Berlin-New York, 1976.

[3]

C. Bernardi and Y. Maday, Spectral Methods, in "Handbook of Numerical Analysis, Vol. V," 209-485, North-Holland, Amsterdam, 1997.

[4]

J. P. Boyd, Spectral method using rational basis functions on an infinite interval, J. Comp. Phys., 69 (1987), 112-142. doi: 10.1016/0021-9991(87)90158-6.

[5]

J. P. Boyd, Orthogonal rational functions on a semi-infinite interval, J. Comp. Phys., 70 (1987), 63-88. doi: 10.1016/0021-9991(87)90002-7.

[6]

C. I. Christov, A complete orthonormal system of functions in $L^2(-\infty,\infty)$ space, SIAM J. Appl. Math., 42 (1982), 1337-1344. doi: 10.1137/0142093.

[7]

Ben-yu Guo, "Spectral Methods and Their Applications," World Scientific Publishing Co., Inc., River Edge, NJ, 1998.

[8]

Ben-yu Guo, Jie Shen and Li-lian Wang, Optional spectral-Galerkin methods using generalizd Jacobi polynomials, J. Sci. Comp., 27 (2006), 305-322. doi: 10.1007/s10915-005-9055-7.

[9]

Ben-yu Guo, Jie Shen and Li-lian Wang, Generalized Jacobi polynomials/functions and their applications, Appl. Numer. Math., 59 (2009), 1011-1028. doi: 10.1016/j.apnum.2008.04.003.

[10]

Ben-yu Guo, Jie Shen and Zhong-qing Wang, A rational approximation and its applications to differential equations on the half line, J. Sci. Comput., 15 (2000), 117-147. doi: 10.1023/A:1007698525506.

[11]

Ben-yu Guo, Jie Shen and Zhong-qing Wang, Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval, Inter. J. Numer. Meth. Engin., 53 (2002), 65-84. doi: 10.1002/nme.392.

[12]

Ben-yu Guo and Li-lian Wang, Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces, J. Appr. Theo., 128 (2004), 1-41. doi: 10.1016/j.jat.2004.03.008.

[13]

Ben-yu Guo and Tian-jun Wang, Composite generalized Laguerre-Legendre spectral method with domain decomposition and its application to Fokker-Planck equation in an finite channel, Math. Comp., 78 (2009), 129-151. doi: 10.1090/S0025-5718-08-02152-2.

[14]

Ben-yu Guo and Tian-jun Wang, Composite Laguerre-Legendre spectral method for exterior problems, Adv. Comput. Math., 32 (2010), 393-429. doi: 10.1007/s10444-008-9112-5.

[15]

Ben-yu Guo and Yong-gang Yi, Generalized Jacobi rational spectral method and its applications, J. Sci. Comput., 43 (2010), 201-238. doi: 10.1007/s10915-010-9353-6.

[16]

A. B. J. Kuijlaars, A. Martinez-Finkelshtein and R. Orive, Orthogonality of Jacobi polynomials with general parameters, Elec. Tran. on Numer. Anal., 19 (2005), 1-17.

[17]

Li Huiyuan, "Super Spectral Viscosity Methods for Nonliear Conservation Laws, Chebyshev Collocation Methods and Their Applications," Ph.D Thesis, Shanghai University, Shanghai, China, 2002.

[18]

Jie Shen, Efficient spectral-Galerkin method I. Direct solvers of second- and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), 1489-1505. doi: 10.1137/0915089.

[19]

Jie Shen, Efficient spectral-Galerkin method II. Direct solvers of second- and fourth-order equations using Chebyshev polynomials, SIAM J. Sci. Comput., 16 (1995), 74-87. doi: 10.1137/0916006.

[20]

Jie Shen and Li-lian Wang, Some recent advances on spectral methods for unbounded domains, Commun. Comput. Phys., 5 (2009), 195-241.

[21]

G. Szegö, "Orthogonal Polynomials," Amer. Math. Soc., Providence, R.I., 1959.

[22]

Tian-jun Wang and Zhong-qing Wang, Error analysis of Legendre spectral method with essential imposition of Neumann boundary condition, Appl. Numer. Math., 59 (2009), 2444-2451. doi: 10.1016/j.apnum.2009.05.003.

[23]

Zhong-qing Wang and Ben-yu Guo, Jacobi rational approximation and spectral method for differential equations of degenerate type, Math. Comp., 77 (2008), 883-907.

[24]

Zhong-qing Wang and Xu-hong Yu, Jacobi spectral method with essential imposition of Neumann boundary condition, submitted.

[25]

Yong-gang Yi and Ben-yu Guo, Generalized Jacobi rational spectral method and its applications to degenerated differentual equations on the half line, submitted.

show all references

References:
[1]

F. Auteri, N. Parolini and L. Quartapelle, Essential imposition of Neumann condition in Galerkin-Legendre elliptic solvers, J. Comput. Phys., 185 (2003), 427-444. doi: 10.1016/S0021-9991(02)00064-5.

[2]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction," Grundlehren der Mathematischen Wissenschaften, No. 223, Spring-Verlag, Berlin-New York, 1976.

[3]

C. Bernardi and Y. Maday, Spectral Methods, in "Handbook of Numerical Analysis, Vol. V," 209-485, North-Holland, Amsterdam, 1997.

[4]

J. P. Boyd, Spectral method using rational basis functions on an infinite interval, J. Comp. Phys., 69 (1987), 112-142. doi: 10.1016/0021-9991(87)90158-6.

[5]

J. P. Boyd, Orthogonal rational functions on a semi-infinite interval, J. Comp. Phys., 70 (1987), 63-88. doi: 10.1016/0021-9991(87)90002-7.

[6]

C. I. Christov, A complete orthonormal system of functions in $L^2(-\infty,\infty)$ space, SIAM J. Appl. Math., 42 (1982), 1337-1344. doi: 10.1137/0142093.

[7]

Ben-yu Guo, "Spectral Methods and Their Applications," World Scientific Publishing Co., Inc., River Edge, NJ, 1998.

[8]

Ben-yu Guo, Jie Shen and Li-lian Wang, Optional spectral-Galerkin methods using generalizd Jacobi polynomials, J. Sci. Comp., 27 (2006), 305-322. doi: 10.1007/s10915-005-9055-7.

[9]

Ben-yu Guo, Jie Shen and Li-lian Wang, Generalized Jacobi polynomials/functions and their applications, Appl. Numer. Math., 59 (2009), 1011-1028. doi: 10.1016/j.apnum.2008.04.003.

[10]

Ben-yu Guo, Jie Shen and Zhong-qing Wang, A rational approximation and its applications to differential equations on the half line, J. Sci. Comput., 15 (2000), 117-147. doi: 10.1023/A:1007698525506.

[11]

Ben-yu Guo, Jie Shen and Zhong-qing Wang, Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval, Inter. J. Numer. Meth. Engin., 53 (2002), 65-84. doi: 10.1002/nme.392.

[12]

Ben-yu Guo and Li-lian Wang, Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces, J. Appr. Theo., 128 (2004), 1-41. doi: 10.1016/j.jat.2004.03.008.

[13]

Ben-yu Guo and Tian-jun Wang, Composite generalized Laguerre-Legendre spectral method with domain decomposition and its application to Fokker-Planck equation in an finite channel, Math. Comp., 78 (2009), 129-151. doi: 10.1090/S0025-5718-08-02152-2.

[14]

Ben-yu Guo and Tian-jun Wang, Composite Laguerre-Legendre spectral method for exterior problems, Adv. Comput. Math., 32 (2010), 393-429. doi: 10.1007/s10444-008-9112-5.

[15]

Ben-yu Guo and Yong-gang Yi, Generalized Jacobi rational spectral method and its applications, J. Sci. Comput., 43 (2010), 201-238. doi: 10.1007/s10915-010-9353-6.

[16]

A. B. J. Kuijlaars, A. Martinez-Finkelshtein and R. Orive, Orthogonality of Jacobi polynomials with general parameters, Elec. Tran. on Numer. Anal., 19 (2005), 1-17.

[17]

Li Huiyuan, "Super Spectral Viscosity Methods for Nonliear Conservation Laws, Chebyshev Collocation Methods and Their Applications," Ph.D Thesis, Shanghai University, Shanghai, China, 2002.

[18]

Jie Shen, Efficient spectral-Galerkin method I. Direct solvers of second- and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), 1489-1505. doi: 10.1137/0915089.

[19]

Jie Shen, Efficient spectral-Galerkin method II. Direct solvers of second- and fourth-order equations using Chebyshev polynomials, SIAM J. Sci. Comput., 16 (1995), 74-87. doi: 10.1137/0916006.

[20]

Jie Shen and Li-lian Wang, Some recent advances on spectral methods for unbounded domains, Commun. Comput. Phys., 5 (2009), 195-241.

[21]

G. Szegö, "Orthogonal Polynomials," Amer. Math. Soc., Providence, R.I., 1959.

[22]

Tian-jun Wang and Zhong-qing Wang, Error analysis of Legendre spectral method with essential imposition of Neumann boundary condition, Appl. Numer. Math., 59 (2009), 2444-2451. doi: 10.1016/j.apnum.2009.05.003.

[23]

Zhong-qing Wang and Ben-yu Guo, Jacobi rational approximation and spectral method for differential equations of degenerate type, Math. Comp., 77 (2008), 883-907.

[24]

Zhong-qing Wang and Xu-hong Yu, Jacobi spectral method with essential imposition of Neumann boundary condition, submitted.

[25]

Yong-gang Yi and Ben-yu Guo, Generalized Jacobi rational spectral method and its applications to degenerated differentual equations on the half line, submitted.

[1]

Guo Ben-Yu, Wang Zhong-Qing. Modified Chebyshev rational spectral method for the whole line. Conference Publications, 2003, 2003 (Special) : 365-374. doi: 10.3934/proc.2003.2003.365

[2]

Jean-François Coulombel, Frédéric Lagoutière. The Neumann numerical boundary condition for transport equations. Kinetic and Related Models, 2020, 13 (1) : 1-32. doi: 10.3934/krm.2020001

[3]

O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110

[4]

Jaeyoung Byeon, Sangdon Jin. The Hénon equation with a critical exponent under the Neumann boundary condition. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4353-4390. doi: 10.3934/dcds.2018190

[5]

Yin Yang, Sujuan Kang, Vasiliy I. Vasil'ev. The Jacobi spectral collocation method for fractional integro-differential equations with non-smooth solutions. Electronic Research Archive, 2020, 28 (3) : 1161-1189. doi: 10.3934/era.2020064

[6]

Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations and Control Theory, 2015, 4 (3) : 325-346. doi: 10.3934/eect.2015.4.325

[7]

Frank Neubrander, Koray Özer, Teresa Sandmaier. Rational approximations of semigroups without scaling and squaring. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5305-5317. doi: 10.3934/dcds.2013.33.5305

[8]

Grégoire Allaire, Yves Capdeboscq, Marjolaine Puel. Homogenization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 1-31. doi: 10.3934/dcdsb.2012.17.1

[9]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[10]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[11]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control and Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[12]

Zhenghuan Gao, Peihe Wang. Global $ C^2 $-estimates for smooth solutions to uniformly parabolic equations with Neumann boundary condition. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1201-1223. doi: 10.3934/dcds.2021152

[13]

Masaru Ikehata. On finding an obstacle with the Leontovich boundary condition via the time domain enclosure method. Inverse Problems and Imaging, 2017, 11 (1) : 99-123. doi: 10.3934/ipi.2017006

[14]

Huaibin Li. An equivalent characterization of the summability condition for rational maps. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4567-4578. doi: 10.3934/dcds.2013.33.4567

[15]

Xuhui Wang, Lei Hu. A new method to solve the Hamilton-Jacobi-Bellman equation for a stochastic portfolio optimization model with boundary memory. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021137

[16]

Ben-Yu Guo, Yu-Jian Jiao. Mixed generalized Laguerre-Fourier spectral method for exterior problem of Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 315-345. doi: 10.3934/dcdsb.2009.11.315

[17]

Esha Chatterjee, Sk. Sarif Hassan. On the asymptotic character of a generalized rational difference equation. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1707-1718. doi: 10.3934/dcds.2018070

[18]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure and Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[19]

Virginie Bonnaillie-Noël. Harmonic oscillators with Neumann condition on the half-line. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2221-2237. doi: 10.3934/cpaa.2012.11.2221

[20]

Yavar Kian, Morgan Morancey, Lauri Oksanen. Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Mathematical Control and Related Fields, 2019, 9 (2) : 289-312. doi: 10.3934/mcrf.2019015

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]