• Previous Article
    Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay
  • DCDS-B Home
  • This Issue
  • Next Article
    A passivity-based stability criterion for reaction diffusion systems with interconnected structure
January  2012, 17(1): 325-346. doi: 10.3934/dcdsb.2012.17.325

Generalized Jacobi rational spectral methods with essential imposition of Neumann boundary conditions in unbounded domains

1. 

Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China

Received  August 2010 Revised  February 2011 Published  October 2011

In this paper, we develop several generalized Jacobi rational spectral methods with essential imposition of Neumann boundary conditions for one/two dimensional Neumann problems. Some basic results on the generalized Jacobi rational approximations for Neumann problems are established, which play important roles in the related spectral methods. Three model problems are considered. The convergence of proposed schemes is proved. Numerical results demonstrate their spectral accuracy and efficiency.
Citation: Zhong-Qing Wang, Jing-Xia Wu. Generalized Jacobi rational spectral methods with essential imposition of Neumann boundary conditions in unbounded domains. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 325-346. doi: 10.3934/dcdsb.2012.17.325
References:
[1]

F. Auteri, N. Parolini and L. Quartapelle, Essential imposition of Neumann condition in Galerkin-Legendre elliptic solvers,, J. Comput. Phys., 185 (2003), 427.  doi: 10.1016/S0021-9991(02)00064-5.  Google Scholar

[2]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, (1976).   Google Scholar

[3]

C. Bernardi and Y. Maday, Spectral Methods,, in, (1997), 209.   Google Scholar

[4]

J. P. Boyd, Spectral method using rational basis functions on an infinite interval,, J. Comp. Phys., 69 (1987), 112.  doi: 10.1016/0021-9991(87)90158-6.  Google Scholar

[5]

J. P. Boyd, Orthogonal rational functions on a semi-infinite interval,, J. Comp. Phys., 70 (1987), 63.  doi: 10.1016/0021-9991(87)90002-7.  Google Scholar

[6]

C. I. Christov, A complete orthonormal system of functions in $L^2(-\infty,\infty)$ space,, SIAM J. Appl. Math., 42 (1982), 1337.  doi: 10.1137/0142093.  Google Scholar

[7]

Ben-yu Guo, "Spectral Methods and Their Applications,", World Scientific Publishing Co., (1998).   Google Scholar

[8]

Ben-yu Guo, Jie Shen and Li-lian Wang, Optional spectral-Galerkin methods using generalizd Jacobi polynomials,, J. Sci. Comp., 27 (2006), 305.  doi: 10.1007/s10915-005-9055-7.  Google Scholar

[9]

Ben-yu Guo, Jie Shen and Li-lian Wang, Generalized Jacobi polynomials/functions and their applications,, Appl. Numer. Math., 59 (2009), 1011.  doi: 10.1016/j.apnum.2008.04.003.  Google Scholar

[10]

Ben-yu Guo, Jie Shen and Zhong-qing Wang, A rational approximation and its applications to differential equations on the half line,, J. Sci. Comput., 15 (2000), 117.  doi: 10.1023/A:1007698525506.  Google Scholar

[11]

Ben-yu Guo, Jie Shen and Zhong-qing Wang, Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval,, Inter. J. Numer. Meth. Engin., 53 (2002), 65.  doi: 10.1002/nme.392.  Google Scholar

[12]

Ben-yu Guo and Li-lian Wang, Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces,, J. Appr. Theo., 128 (2004), 1.  doi: 10.1016/j.jat.2004.03.008.  Google Scholar

[13]

Ben-yu Guo and Tian-jun Wang, Composite generalized Laguerre-Legendre spectral method with domain decomposition and its application to Fokker-Planck equation in an finite channel,, Math. Comp., 78 (2009), 129.  doi: 10.1090/S0025-5718-08-02152-2.  Google Scholar

[14]

Ben-yu Guo and Tian-jun Wang, Composite Laguerre-Legendre spectral method for exterior problems,, Adv. Comput. Math., 32 (2010), 393.  doi: 10.1007/s10444-008-9112-5.  Google Scholar

[15]

Ben-yu Guo and Yong-gang Yi, Generalized Jacobi rational spectral method and its applications,, J. Sci. Comput., 43 (2010), 201.  doi: 10.1007/s10915-010-9353-6.  Google Scholar

[16]

A. B. J. Kuijlaars, A. Martinez-Finkelshtein and R. Orive, Orthogonality of Jacobi polynomials with general parameters,, Elec. Tran. on Numer. Anal., 19 (2005), 1.   Google Scholar

[17]

Li Huiyuan, "Super Spectral Viscosity Methods for Nonliear Conservation Laws, Chebyshev Collocation Methods and Their Applications,", Ph.D Thesis, (2002).   Google Scholar

[18]

Jie Shen, Efficient spectral-Galerkin method I. Direct solvers of second- and fourth-order equations using Legendre polynomials,, SIAM J. Sci. Comput., 15 (1994), 1489.  doi: 10.1137/0915089.  Google Scholar

[19]

Jie Shen, Efficient spectral-Galerkin method II. Direct solvers of second- and fourth-order equations using Chebyshev polynomials,, SIAM J. Sci. Comput., 16 (1995), 74.  doi: 10.1137/0916006.  Google Scholar

[20]

Jie Shen and Li-lian Wang, Some recent advances on spectral methods for unbounded domains,, Commun. Comput. Phys., 5 (2009), 195.   Google Scholar

[21]

G. Szegö, "Orthogonal Polynomials,", Amer. Math. Soc., (1959).   Google Scholar

[22]

Tian-jun Wang and Zhong-qing Wang, Error analysis of Legendre spectral method with essential imposition of Neumann boundary condition,, Appl. Numer. Math., 59 (2009), 2444.  doi: 10.1016/j.apnum.2009.05.003.  Google Scholar

[23]

Zhong-qing Wang and Ben-yu Guo, Jacobi rational approximation and spectral method for differential equations of degenerate type,, Math. Comp., 77 (2008), 883.   Google Scholar

[24]

Zhong-qing Wang and Xu-hong Yu, Jacobi spectral method with essential imposition of Neumann boundary condition,, submitted., ().   Google Scholar

[25]

Yong-gang Yi and Ben-yu Guo, Generalized Jacobi rational spectral method and its applications to degenerated differentual equations on the half line,, submitted., ().   Google Scholar

show all references

References:
[1]

F. Auteri, N. Parolini and L. Quartapelle, Essential imposition of Neumann condition in Galerkin-Legendre elliptic solvers,, J. Comput. Phys., 185 (2003), 427.  doi: 10.1016/S0021-9991(02)00064-5.  Google Scholar

[2]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, (1976).   Google Scholar

[3]

C. Bernardi and Y. Maday, Spectral Methods,, in, (1997), 209.   Google Scholar

[4]

J. P. Boyd, Spectral method using rational basis functions on an infinite interval,, J. Comp. Phys., 69 (1987), 112.  doi: 10.1016/0021-9991(87)90158-6.  Google Scholar

[5]

J. P. Boyd, Orthogonal rational functions on a semi-infinite interval,, J. Comp. Phys., 70 (1987), 63.  doi: 10.1016/0021-9991(87)90002-7.  Google Scholar

[6]

C. I. Christov, A complete orthonormal system of functions in $L^2(-\infty,\infty)$ space,, SIAM J. Appl. Math., 42 (1982), 1337.  doi: 10.1137/0142093.  Google Scholar

[7]

Ben-yu Guo, "Spectral Methods and Their Applications,", World Scientific Publishing Co., (1998).   Google Scholar

[8]

Ben-yu Guo, Jie Shen and Li-lian Wang, Optional spectral-Galerkin methods using generalizd Jacobi polynomials,, J. Sci. Comp., 27 (2006), 305.  doi: 10.1007/s10915-005-9055-7.  Google Scholar

[9]

Ben-yu Guo, Jie Shen and Li-lian Wang, Generalized Jacobi polynomials/functions and their applications,, Appl. Numer. Math., 59 (2009), 1011.  doi: 10.1016/j.apnum.2008.04.003.  Google Scholar

[10]

Ben-yu Guo, Jie Shen and Zhong-qing Wang, A rational approximation and its applications to differential equations on the half line,, J. Sci. Comput., 15 (2000), 117.  doi: 10.1023/A:1007698525506.  Google Scholar

[11]

Ben-yu Guo, Jie Shen and Zhong-qing Wang, Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval,, Inter. J. Numer. Meth. Engin., 53 (2002), 65.  doi: 10.1002/nme.392.  Google Scholar

[12]

Ben-yu Guo and Li-lian Wang, Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces,, J. Appr. Theo., 128 (2004), 1.  doi: 10.1016/j.jat.2004.03.008.  Google Scholar

[13]

Ben-yu Guo and Tian-jun Wang, Composite generalized Laguerre-Legendre spectral method with domain decomposition and its application to Fokker-Planck equation in an finite channel,, Math. Comp., 78 (2009), 129.  doi: 10.1090/S0025-5718-08-02152-2.  Google Scholar

[14]

Ben-yu Guo and Tian-jun Wang, Composite Laguerre-Legendre spectral method for exterior problems,, Adv. Comput. Math., 32 (2010), 393.  doi: 10.1007/s10444-008-9112-5.  Google Scholar

[15]

Ben-yu Guo and Yong-gang Yi, Generalized Jacobi rational spectral method and its applications,, J. Sci. Comput., 43 (2010), 201.  doi: 10.1007/s10915-010-9353-6.  Google Scholar

[16]

A. B. J. Kuijlaars, A. Martinez-Finkelshtein and R. Orive, Orthogonality of Jacobi polynomials with general parameters,, Elec. Tran. on Numer. Anal., 19 (2005), 1.   Google Scholar

[17]

Li Huiyuan, "Super Spectral Viscosity Methods for Nonliear Conservation Laws, Chebyshev Collocation Methods and Their Applications,", Ph.D Thesis, (2002).   Google Scholar

[18]

Jie Shen, Efficient spectral-Galerkin method I. Direct solvers of second- and fourth-order equations using Legendre polynomials,, SIAM J. Sci. Comput., 15 (1994), 1489.  doi: 10.1137/0915089.  Google Scholar

[19]

Jie Shen, Efficient spectral-Galerkin method II. Direct solvers of second- and fourth-order equations using Chebyshev polynomials,, SIAM J. Sci. Comput., 16 (1995), 74.  doi: 10.1137/0916006.  Google Scholar

[20]

Jie Shen and Li-lian Wang, Some recent advances on spectral methods for unbounded domains,, Commun. Comput. Phys., 5 (2009), 195.   Google Scholar

[21]

G. Szegö, "Orthogonal Polynomials,", Amer. Math. Soc., (1959).   Google Scholar

[22]

Tian-jun Wang and Zhong-qing Wang, Error analysis of Legendre spectral method with essential imposition of Neumann boundary condition,, Appl. Numer. Math., 59 (2009), 2444.  doi: 10.1016/j.apnum.2009.05.003.  Google Scholar

[23]

Zhong-qing Wang and Ben-yu Guo, Jacobi rational approximation and spectral method for differential equations of degenerate type,, Math. Comp., 77 (2008), 883.   Google Scholar

[24]

Zhong-qing Wang and Xu-hong Yu, Jacobi spectral method with essential imposition of Neumann boundary condition,, submitted., ().   Google Scholar

[25]

Yong-gang Yi and Ben-yu Guo, Generalized Jacobi rational spectral method and its applications to degenerated differentual equations on the half line,, submitted., ().   Google Scholar

[1]

Guo Ben-Yu, Wang Zhong-Qing. Modified Chebyshev rational spectral method for the whole line. Conference Publications, 2003, 2003 (Special) : 365-374. doi: 10.3934/proc.2003.2003.365

[2]

O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110

[3]

Jaeyoung Byeon, Sangdon Jin. The Hénon equation with a critical exponent under the Neumann boundary condition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4353-4390. doi: 10.3934/dcds.2018190

[4]

Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations & Control Theory, 2015, 4 (3) : 325-346. doi: 10.3934/eect.2015.4.325

[5]

Frank Neubrander, Koray Özer, Teresa Sandmaier. Rational approximations of semigroups without scaling and squaring. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5305-5317. doi: 10.3934/dcds.2013.33.5305

[6]

Grégoire Allaire, Yves Capdeboscq, Marjolaine Puel. Homogenization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 1-31. doi: 10.3934/dcdsb.2012.17.1

[7]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[8]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[9]

Masaru Ikehata. On finding an obstacle with the Leontovich boundary condition via the time domain enclosure method. Inverse Problems & Imaging, 2017, 11 (1) : 99-123. doi: 10.3934/ipi.2017006

[10]

Huaibin Li. An equivalent characterization of the summability condition for rational maps. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4567-4578. doi: 10.3934/dcds.2013.33.4567

[11]

Ben-Yu Guo, Yu-Jian Jiao. Mixed generalized Laguerre-Fourier spectral method for exterior problem of Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 315-345. doi: 10.3934/dcdsb.2009.11.315

[12]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[13]

Esha Chatterjee, Sk. Sarif Hassan. On the asymptotic character of a generalized rational difference equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1707-1718. doi: 10.3934/dcds.2018070

[14]

Virginie Bonnaillie-Noël. Harmonic oscillators with Neumann condition on the half-line. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2221-2237. doi: 10.3934/cpaa.2012.11.2221

[15]

Yavar Kian, Morgan Morancey, Lauri Oksanen. Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Mathematical Control & Related Fields, 2019, 9 (2) : 289-312. doi: 10.3934/mcrf.2019015

[16]

Yacheng Liu, Runzhang Xu. Potential well method for initial boundary value problem of the generalized double dispersion equations. Communications on Pure & Applied Analysis, 2008, 7 (1) : 63-81. doi: 10.3934/cpaa.2008.7.63

[17]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[18]

R. Estrada. Boundary layers and spectral content asymptotics. Conference Publications, 1998, 1998 (Special) : 242-252. doi: 10.3934/proc.1998.1998.242

[19]

Yves Achdou, Fabio Camilli, Lucilla Corrias. On numerical approximation of the Hamilton-Jacobi-transport system arising in high frequency approximations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 629-650. doi: 10.3934/dcdsb.2014.19.629

[20]

Teresa Faria, Eduardo Liz, José J. Oliveira, Sergei Trofimchuk. On a generalized Yorke condition for scalar delayed population models. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 481-500. doi: 10.3934/dcds.2005.12.481

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]