• Previous Article
    Stability and Hopf bifurcations for a delayed diffusion system in population dynamics
  • DCDS-B Home
  • This Issue
  • Next Article
    Generalized Jacobi rational spectral methods with essential imposition of Neumann boundary conditions in unbounded domains
January  2012, 17(1): 347-366. doi: 10.3934/dcdsb.2012.17.347

Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay

1. 

Department of Mathematics, Xidian University, Xi’an, Shaanxi 710071, China

2. 

School of Mathematic and Statistics, Lanzhou University, Lanzhou, Gansu 730000

3. 

Department of Applied Mathematics, Xidian University, Xi'an 710071, China

Received  June 2009 Revised  May 2011 Published  October 2011

This paper is concerned with the exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with nonlocal delay. The existence and comparison theorem of solutions of the corresponding Cauchy problem in a weighted Sobolev space are first established for the systems on $\mathbb{R}$ by appealing to the theory of semigroup and abstract functional differential equations. The exponential stability of traveling fronts is then proved by the comparison principle and the (technical) weighted energy method. Comparing with the previous results, our results recovers and/or improves a number of existing ones. Finally, we apply our results to some biological and epidemic models and obtain some new results.
Citation: Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347
References:
[1]

J. Al-Omari and S. A. Gourley, Monotone traveling fronts in an age-structured reaction-diffusion model of a single species,, J. Math. Biol., 45 (2002), 294.  doi: 10.1007/s002850200159.  Google Scholar

[2]

J. Al-Omari and S. A. Gourley, A nonlocal reaction-diffusion model for a single species with stage structure and distributed maturation delay,, Euro. J. Appl. Math., 16 (2005), 37.  doi: 10.1017/S0956792504005716.  Google Scholar

[3]

N. F. Britton, "Reaction-Diffusion Equations and Their Applications to Biology,", Academic Press, (1986).   Google Scholar

[4]

X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations,, Adv. Differential Equations, 2 (1997), 125.   Google Scholar

[5]

S. A. Gourley, Linear stability of travelling fronts in an age-structured reaction-diffusion population model,, Q. J. Mech. Appl. Math., 58 (2005), 257.  doi: 10.1093/qjmamj/hbi012.  Google Scholar

[6]

G. Li, M. Mei and Y. Wong, Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model,, Math. Biosci. Engin., 5 (2008), 85.  doi: 10.3934/mbe.2008.5.85.  Google Scholar

[7]

W.-T. Li and S.-L. Wu, Traveling waves in a diffusive predator-prey model with Holling type-III functional response,, Chaos, 37 (2008), 476.  doi: 10.1016/j.chaos.2006.09.039.  Google Scholar

[8]

W.-T. Li, S. Ruan and Z.-C. Wang, On the diffusive Nicholson's blowflies equation with nonlocal delays,, J. Nonlinear Sci., 17 (2007), 505.  doi: 10.1007/s00332-007-9003-9.  Google Scholar

[9]

D. Liang and J. Wu, Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects,, J. Nonlinear Sci., 13 (2003), 289.  doi: 10.1007/s00332-003-0524-6.  Google Scholar

[10]

C.-K. Lin and M. Mei, On Travelling wavefronts of the Nicholson's blowflies equation with diffusion,, Proc. Royal Soc. Edinburgh A, 140 (2010), 135.  doi: 10.1017/S0308210508000784.  Google Scholar

[11]

R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1.  doi: 10.2307/2001590.  Google Scholar

[12]

S. Ma and X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay,, J. Differential Equations, 217 (2005), 54.   Google Scholar

[13]

M. Mei, J. W.-H. So, M. Li and S. Shen, Asymptotic stability of traveling waves for Nicholson's blowflies equation with diffusion,, Proc. Royal Soc. Edinburgh A, 134 (2004), 579.  doi: 10.1017/S0308210500003358.  Google Scholar

[14]

M. Mei and J. W.-H So, Stability of strong traveling waves for a nonlocal time-delayed reaction-diffusion equation,, Proc. Royal Soc. Edinburgh A, 138 (2008), 551.   Google Scholar

[15]

S. Ruan and D. Xiao, Stability of steady states and existence of travelling waves in a vector-disease model,, Proc. Royal Soc. Edinburgh A, 134 (2004), 991.  doi: 10.1017/S0308210500003590.  Google Scholar

[16]

D. H. Sattinger, On the stability of waves of nonlinear parabolic systems,, Adv. Math., 22 (1976), 312.  doi: 10.1016/0001-8708(76)90098-0.  Google Scholar

[17]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional-differential equations,, Trans. Amer. Math. Soc., 302 (1987), 587.   Google Scholar

[18]

H. L. Smith and X. Q. Zhao, Global asymptotical stability of traveling waves in delayed reaction-diffusion equations,, SIAM J. Math. Anal., 31 (2000), 514.  doi: 10.1137/S0036141098346785.  Google Scholar

[19]

A. I. Volpert, V. A. Volpert and V. A. Volpert, "Travelling Wave Solutions of Parabolic Systems,'' Translations of Mathematical Monographs,, Vol. 140, (1994).   Google Scholar

[20]

Z.-C. Wang, W.-T. Li and S. Ruan, Traveling wave fronts in reaction-diffusion systems with spatio-temporal delays,, J. Differential Equations, 222 (2006), 185.   Google Scholar

[21]

Z.-C. Wang, W.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153.   Google Scholar

[22]

Z.-C. Wang, W.-T. Li and S. Ruan, Travelling fronts in monostable equations with nonlocal delayed effects,, J. Dynam. Differential Equations, 20 (2008), 563.   Google Scholar

[23]

J. Wu, "Theory and Applications of Partial Functional-Differential Equations,'', Applied Mathematical Sciences, 119 (1996).   Google Scholar

[24]

S.-L. Wu, W.-T. Li and S.-Y. Liu, Oscillatory waves in reaction-diffusion equations with nonlocal delay and crossing-monostability,, Nonlinear Anal. RWA, 10 (2009), 3141.  doi: 10.1016/j.nonrwa.2008.10.012.  Google Scholar

[25]

S.-L. Wu, W.-T. Li and S.-Y. Liu, Asymptotic stability of traveling wave fronts in nonlocal reaction-diffusion equations with delay,, J. Math. Anal. Appl., 360 (2009), 439.  doi: 10.1016/j.jmaa.2009.06.061.  Google Scholar

[26]

S.-L. Wu, H.-Q. Zhao and S.-Y. Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability,, Z. angew. Math. Phys., 62 (2011), 377.  doi: 10.1007/s00033-010-0112-1.  Google Scholar

[27]

J. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161.  doi: 10.1137/S0036144599364296.  Google Scholar

[28]

Q. Ye and Z. Li, "Introduction to Reaction-Diffusion Equations,", Science Press, (1990).   Google Scholar

show all references

References:
[1]

J. Al-Omari and S. A. Gourley, Monotone traveling fronts in an age-structured reaction-diffusion model of a single species,, J. Math. Biol., 45 (2002), 294.  doi: 10.1007/s002850200159.  Google Scholar

[2]

J. Al-Omari and S. A. Gourley, A nonlocal reaction-diffusion model for a single species with stage structure and distributed maturation delay,, Euro. J. Appl. Math., 16 (2005), 37.  doi: 10.1017/S0956792504005716.  Google Scholar

[3]

N. F. Britton, "Reaction-Diffusion Equations and Their Applications to Biology,", Academic Press, (1986).   Google Scholar

[4]

X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations,, Adv. Differential Equations, 2 (1997), 125.   Google Scholar

[5]

S. A. Gourley, Linear stability of travelling fronts in an age-structured reaction-diffusion population model,, Q. J. Mech. Appl. Math., 58 (2005), 257.  doi: 10.1093/qjmamj/hbi012.  Google Scholar

[6]

G. Li, M. Mei and Y. Wong, Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model,, Math. Biosci. Engin., 5 (2008), 85.  doi: 10.3934/mbe.2008.5.85.  Google Scholar

[7]

W.-T. Li and S.-L. Wu, Traveling waves in a diffusive predator-prey model with Holling type-III functional response,, Chaos, 37 (2008), 476.  doi: 10.1016/j.chaos.2006.09.039.  Google Scholar

[8]

W.-T. Li, S. Ruan and Z.-C. Wang, On the diffusive Nicholson's blowflies equation with nonlocal delays,, J. Nonlinear Sci., 17 (2007), 505.  doi: 10.1007/s00332-007-9003-9.  Google Scholar

[9]

D. Liang and J. Wu, Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects,, J. Nonlinear Sci., 13 (2003), 289.  doi: 10.1007/s00332-003-0524-6.  Google Scholar

[10]

C.-K. Lin and M. Mei, On Travelling wavefronts of the Nicholson's blowflies equation with diffusion,, Proc. Royal Soc. Edinburgh A, 140 (2010), 135.  doi: 10.1017/S0308210508000784.  Google Scholar

[11]

R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1.  doi: 10.2307/2001590.  Google Scholar

[12]

S. Ma and X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay,, J. Differential Equations, 217 (2005), 54.   Google Scholar

[13]

M. Mei, J. W.-H. So, M. Li and S. Shen, Asymptotic stability of traveling waves for Nicholson's blowflies equation with diffusion,, Proc. Royal Soc. Edinburgh A, 134 (2004), 579.  doi: 10.1017/S0308210500003358.  Google Scholar

[14]

M. Mei and J. W.-H So, Stability of strong traveling waves for a nonlocal time-delayed reaction-diffusion equation,, Proc. Royal Soc. Edinburgh A, 138 (2008), 551.   Google Scholar

[15]

S. Ruan and D. Xiao, Stability of steady states and existence of travelling waves in a vector-disease model,, Proc. Royal Soc. Edinburgh A, 134 (2004), 991.  doi: 10.1017/S0308210500003590.  Google Scholar

[16]

D. H. Sattinger, On the stability of waves of nonlinear parabolic systems,, Adv. Math., 22 (1976), 312.  doi: 10.1016/0001-8708(76)90098-0.  Google Scholar

[17]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional-differential equations,, Trans. Amer. Math. Soc., 302 (1987), 587.   Google Scholar

[18]

H. L. Smith and X. Q. Zhao, Global asymptotical stability of traveling waves in delayed reaction-diffusion equations,, SIAM J. Math. Anal., 31 (2000), 514.  doi: 10.1137/S0036141098346785.  Google Scholar

[19]

A. I. Volpert, V. A. Volpert and V. A. Volpert, "Travelling Wave Solutions of Parabolic Systems,'' Translations of Mathematical Monographs,, Vol. 140, (1994).   Google Scholar

[20]

Z.-C. Wang, W.-T. Li and S. Ruan, Traveling wave fronts in reaction-diffusion systems with spatio-temporal delays,, J. Differential Equations, 222 (2006), 185.   Google Scholar

[21]

Z.-C. Wang, W.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153.   Google Scholar

[22]

Z.-C. Wang, W.-T. Li and S. Ruan, Travelling fronts in monostable equations with nonlocal delayed effects,, J. Dynam. Differential Equations, 20 (2008), 563.   Google Scholar

[23]

J. Wu, "Theory and Applications of Partial Functional-Differential Equations,'', Applied Mathematical Sciences, 119 (1996).   Google Scholar

[24]

S.-L. Wu, W.-T. Li and S.-Y. Liu, Oscillatory waves in reaction-diffusion equations with nonlocal delay and crossing-monostability,, Nonlinear Anal. RWA, 10 (2009), 3141.  doi: 10.1016/j.nonrwa.2008.10.012.  Google Scholar

[25]

S.-L. Wu, W.-T. Li and S.-Y. Liu, Asymptotic stability of traveling wave fronts in nonlocal reaction-diffusion equations with delay,, J. Math. Anal. Appl., 360 (2009), 439.  doi: 10.1016/j.jmaa.2009.06.061.  Google Scholar

[26]

S.-L. Wu, H.-Q. Zhao and S.-Y. Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability,, Z. angew. Math. Phys., 62 (2011), 377.  doi: 10.1007/s00033-010-0112-1.  Google Scholar

[27]

J. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161.  doi: 10.1137/S0036144599364296.  Google Scholar

[28]

Q. Ye and Z. Li, "Introduction to Reaction-Diffusion Equations,", Science Press, (1990).   Google Scholar

[1]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[2]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[3]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[4]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[5]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[6]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[7]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[8]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[9]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[10]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[11]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[12]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[13]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[14]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[15]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[16]

Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227

[17]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[18]

Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233

[19]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[20]

Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]