-
Previous Article
Stability and Hopf bifurcations for a delayed diffusion system in population dynamics
- DCDS-B Home
- This Issue
-
Next Article
Generalized Jacobi rational spectral methods with essential imposition of Neumann boundary conditions in unbounded domains
Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay
1. | Department of Mathematics, Xidian University, Xi’an, Shaanxi 710071, China |
2. | School of Mathematic and Statistics, Lanzhou University, Lanzhou, Gansu 730000 |
3. | Department of Applied Mathematics, Xidian University, Xi'an 710071, China |
References:
[1] |
J. Al-Omari and S. A. Gourley, Monotone traveling fronts in an age-structured reaction-diffusion model of a single species,, J. Math. Biol., 45 (2002), 294.
doi: 10.1007/s002850200159. |
[2] |
J. Al-Omari and S. A. Gourley, A nonlocal reaction-diffusion model for a single species with stage structure and distributed maturation delay,, Euro. J. Appl. Math., 16 (2005), 37.
doi: 10.1017/S0956792504005716. |
[3] |
N. F. Britton, "Reaction-Diffusion Equations and Their Applications to Biology,", Academic Press, (1986).
|
[4] |
X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations,, Adv. Differential Equations, 2 (1997), 125.
|
[5] |
S. A. Gourley, Linear stability of travelling fronts in an age-structured reaction-diffusion population model,, Q. J. Mech. Appl. Math., 58 (2005), 257.
doi: 10.1093/qjmamj/hbi012. |
[6] |
G. Li, M. Mei and Y. Wong, Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model,, Math. Biosci. Engin., 5 (2008), 85.
doi: 10.3934/mbe.2008.5.85. |
[7] |
W.-T. Li and S.-L. Wu, Traveling waves in a diffusive predator-prey model with Holling type-III functional response,, Chaos, 37 (2008), 476.
doi: 10.1016/j.chaos.2006.09.039. |
[8] |
W.-T. Li, S. Ruan and Z.-C. Wang, On the diffusive Nicholson's blowflies equation with nonlocal delays,, J. Nonlinear Sci., 17 (2007), 505.
doi: 10.1007/s00332-007-9003-9. |
[9] |
D. Liang and J. Wu, Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects,, J. Nonlinear Sci., 13 (2003), 289.
doi: 10.1007/s00332-003-0524-6. |
[10] |
C.-K. Lin and M. Mei, On Travelling wavefronts of the Nicholson's blowflies equation with diffusion,, Proc. Royal Soc. Edinburgh A, 140 (2010), 135.
doi: 10.1017/S0308210508000784. |
[11] |
R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1.
doi: 10.2307/2001590. |
[12] |
S. Ma and X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay,, J. Differential Equations, 217 (2005), 54.
|
[13] |
M. Mei, J. W.-H. So, M. Li and S. Shen, Asymptotic stability of traveling waves for Nicholson's blowflies equation with diffusion,, Proc. Royal Soc. Edinburgh A, 134 (2004), 579.
doi: 10.1017/S0308210500003358. |
[14] |
M. Mei and J. W.-H So, Stability of strong traveling waves for a nonlocal time-delayed reaction-diffusion equation,, Proc. Royal Soc. Edinburgh A, 138 (2008), 551. Google Scholar |
[15] |
S. Ruan and D. Xiao, Stability of steady states and existence of travelling waves in a vector-disease model,, Proc. Royal Soc. Edinburgh A, 134 (2004), 991.
doi: 10.1017/S0308210500003590. |
[16] |
D. H. Sattinger, On the stability of waves of nonlinear parabolic systems,, Adv. Math., 22 (1976), 312.
doi: 10.1016/0001-8708(76)90098-0. |
[17] |
K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional-differential equations,, Trans. Amer. Math. Soc., 302 (1987), 587.
|
[18] |
H. L. Smith and X. Q. Zhao, Global asymptotical stability of traveling waves in delayed reaction-diffusion equations,, SIAM J. Math. Anal., 31 (2000), 514.
doi: 10.1137/S0036141098346785. |
[19] |
A. I. Volpert, V. A. Volpert and V. A. Volpert, "Travelling Wave Solutions of Parabolic Systems,'' Translations of Mathematical Monographs,, Vol. 140, (1994). Google Scholar |
[20] |
Z.-C. Wang, W.-T. Li and S. Ruan, Traveling wave fronts in reaction-diffusion systems with spatio-temporal delays,, J. Differential Equations, 222 (2006), 185. Google Scholar |
[21] |
Z.-C. Wang, W.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153.
|
[22] |
Z.-C. Wang, W.-T. Li and S. Ruan, Travelling fronts in monostable equations with nonlocal delayed effects,, J. Dynam. Differential Equations, 20 (2008), 563. Google Scholar |
[23] |
J. Wu, "Theory and Applications of Partial Functional-Differential Equations,'', Applied Mathematical Sciences, 119 (1996).
|
[24] |
S.-L. Wu, W.-T. Li and S.-Y. Liu, Oscillatory waves in reaction-diffusion equations with nonlocal delay and crossing-monostability,, Nonlinear Anal. RWA, 10 (2009), 3141.
doi: 10.1016/j.nonrwa.2008.10.012. |
[25] |
S.-L. Wu, W.-T. Li and S.-Y. Liu, Asymptotic stability of traveling wave fronts in nonlocal reaction-diffusion equations with delay,, J. Math. Anal. Appl., 360 (2009), 439.
doi: 10.1016/j.jmaa.2009.06.061. |
[26] |
S.-L. Wu, H.-Q. Zhao and S.-Y. Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability,, Z. angew. Math. Phys., 62 (2011), 377.
doi: 10.1007/s00033-010-0112-1. |
[27] |
J. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161.
doi: 10.1137/S0036144599364296. |
[28] |
Q. Ye and Z. Li, "Introduction to Reaction-Diffusion Equations,", Science Press, (1990). Google Scholar |
show all references
References:
[1] |
J. Al-Omari and S. A. Gourley, Monotone traveling fronts in an age-structured reaction-diffusion model of a single species,, J. Math. Biol., 45 (2002), 294.
doi: 10.1007/s002850200159. |
[2] |
J. Al-Omari and S. A. Gourley, A nonlocal reaction-diffusion model for a single species with stage structure and distributed maturation delay,, Euro. J. Appl. Math., 16 (2005), 37.
doi: 10.1017/S0956792504005716. |
[3] |
N. F. Britton, "Reaction-Diffusion Equations and Their Applications to Biology,", Academic Press, (1986).
|
[4] |
X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations,, Adv. Differential Equations, 2 (1997), 125.
|
[5] |
S. A. Gourley, Linear stability of travelling fronts in an age-structured reaction-diffusion population model,, Q. J. Mech. Appl. Math., 58 (2005), 257.
doi: 10.1093/qjmamj/hbi012. |
[6] |
G. Li, M. Mei and Y. Wong, Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model,, Math. Biosci. Engin., 5 (2008), 85.
doi: 10.3934/mbe.2008.5.85. |
[7] |
W.-T. Li and S.-L. Wu, Traveling waves in a diffusive predator-prey model with Holling type-III functional response,, Chaos, 37 (2008), 476.
doi: 10.1016/j.chaos.2006.09.039. |
[8] |
W.-T. Li, S. Ruan and Z.-C. Wang, On the diffusive Nicholson's blowflies equation with nonlocal delays,, J. Nonlinear Sci., 17 (2007), 505.
doi: 10.1007/s00332-007-9003-9. |
[9] |
D. Liang and J. Wu, Travelling waves and numerical approximations in a reaction advection diffusion equation with nonlocal delayed effects,, J. Nonlinear Sci., 13 (2003), 289.
doi: 10.1007/s00332-003-0524-6. |
[10] |
C.-K. Lin and M. Mei, On Travelling wavefronts of the Nicholson's blowflies equation with diffusion,, Proc. Royal Soc. Edinburgh A, 140 (2010), 135.
doi: 10.1017/S0308210508000784. |
[11] |
R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems,, Trans. Amer. Math. Soc., 321 (1990), 1.
doi: 10.2307/2001590. |
[12] |
S. Ma and X. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay,, J. Differential Equations, 217 (2005), 54.
|
[13] |
M. Mei, J. W.-H. So, M. Li and S. Shen, Asymptotic stability of traveling waves for Nicholson's blowflies equation with diffusion,, Proc. Royal Soc. Edinburgh A, 134 (2004), 579.
doi: 10.1017/S0308210500003358. |
[14] |
M. Mei and J. W.-H So, Stability of strong traveling waves for a nonlocal time-delayed reaction-diffusion equation,, Proc. Royal Soc. Edinburgh A, 138 (2008), 551. Google Scholar |
[15] |
S. Ruan and D. Xiao, Stability of steady states and existence of travelling waves in a vector-disease model,, Proc. Royal Soc. Edinburgh A, 134 (2004), 991.
doi: 10.1017/S0308210500003590. |
[16] |
D. H. Sattinger, On the stability of waves of nonlinear parabolic systems,, Adv. Math., 22 (1976), 312.
doi: 10.1016/0001-8708(76)90098-0. |
[17] |
K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional-differential equations,, Trans. Amer. Math. Soc., 302 (1987), 587.
|
[18] |
H. L. Smith and X. Q. Zhao, Global asymptotical stability of traveling waves in delayed reaction-diffusion equations,, SIAM J. Math. Anal., 31 (2000), 514.
doi: 10.1137/S0036141098346785. |
[19] |
A. I. Volpert, V. A. Volpert and V. A. Volpert, "Travelling Wave Solutions of Parabolic Systems,'' Translations of Mathematical Monographs,, Vol. 140, (1994). Google Scholar |
[20] |
Z.-C. Wang, W.-T. Li and S. Ruan, Traveling wave fronts in reaction-diffusion systems with spatio-temporal delays,, J. Differential Equations, 222 (2006), 185. Google Scholar |
[21] |
Z.-C. Wang, W.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153.
|
[22] |
Z.-C. Wang, W.-T. Li and S. Ruan, Travelling fronts in monostable equations with nonlocal delayed effects,, J. Dynam. Differential Equations, 20 (2008), 563. Google Scholar |
[23] |
J. Wu, "Theory and Applications of Partial Functional-Differential Equations,'', Applied Mathematical Sciences, 119 (1996).
|
[24] |
S.-L. Wu, W.-T. Li and S.-Y. Liu, Oscillatory waves in reaction-diffusion equations with nonlocal delay and crossing-monostability,, Nonlinear Anal. RWA, 10 (2009), 3141.
doi: 10.1016/j.nonrwa.2008.10.012. |
[25] |
S.-L. Wu, W.-T. Li and S.-Y. Liu, Asymptotic stability of traveling wave fronts in nonlocal reaction-diffusion equations with delay,, J. Math. Anal. Appl., 360 (2009), 439.
doi: 10.1016/j.jmaa.2009.06.061. |
[26] |
S.-L. Wu, H.-Q. Zhao and S.-Y. Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability,, Z. angew. Math. Phys., 62 (2011), 377.
doi: 10.1007/s00033-010-0112-1. |
[27] |
J. Xin, Front propagation in heterogeneous media,, SIAM Rev., 42 (2000), 161.
doi: 10.1137/S0036144599364296. |
[28] |
Q. Ye and Z. Li, "Introduction to Reaction-Diffusion Equations,", Science Press, (1990). Google Scholar |
[1] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[2] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[3] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[4] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[5] |
Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020180 |
[6] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[7] |
Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126 |
[8] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
[9] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[10] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[11] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[12] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[13] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[14] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[15] |
Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 |
[16] |
Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227 |
[17] |
Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020376 |
[18] |
Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233 |
[19] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[20] |
Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]