January  2012, 17(1): 367-399. doi: 10.3934/dcdsb.2012.17.367

Stability and Hopf bifurcations for a delayed diffusion system in population dynamics

1. 

Department of Mathematics, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China

2. 

School of Mathematic and Statistics, Lanzhou University, Lanzhou, Gansu 730000

Received  December 2010 Revised  February 2011 Published  October 2011

A generalized two-species Lotka-Volterra reaction-diffusion system with a discrete delay and subject to homogeneous Dirichlet boundary conditions is considered. By regarding the delay as the bifurcation parameter and analyzing in detail the spectrum of the associated linear operator, the stability of the positive steady state bifurcating from the zero solution is studied. In particular, it is shown that the system can undergo a forward Hopf bifurcation at the positive steady state solution when the delay take a sequence of critical values via the implicit function theorem. To verify the obtained theoretical results, some numerical simulations are also included.
Citation: Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367
References:
[1]

S. Busenberg and W. Huang, Stability and Hopf bifurcation for a population delay model with diffusion effects,, J. Differential Equations, 124 (1996), 80.   Google Scholar

[2]

S. N. Chow and J. K. Hale, "Methods of Bifurcation Theory,", Grundlehren der Mathematischen Wissenschaften, 251 (1982).   Google Scholar

[3]

G. E. Hutchinson, Circular causal systems in ecology,, Ann. New York Acad. Sci., 50 (1948), 221.  doi: 10.1111/j.1749-6632.1948.tb39854.x.  Google Scholar

[4]

L. C. Evans, "Partial Differential Equations,", 2nd edition, 19 (2010).   Google Scholar

[5]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion,, J. Math. Anal. Appl., 254 (2001), 433.   Google Scholar

[6]

J. A. Goldstein, "Semigroups of Linear Operators and Applications,", Oxford Mathematical Monographs, (1985).   Google Scholar

[7]

J. Hale, "Theory of Functional Differential Equations,", 2nd edition, 3 (1977).   Google Scholar

[8]

W. Huang, Global Dynamics for a Reaction-Diffusion Equation with Time Delay,, J. Differential Equations, 143 (1998), 293.   Google Scholar

[9]

H. Kielhöfer, "Bifurcation Theory. An Introduction with Applications to PDEs,", Applied Mathematical Sciences, 156 (2004).   Google Scholar

[10]

Y. Kuang and H. L. Smith, Global stability in diffusive delay Lotka-Volterra systems,, Differential Integral Equations, 4 (1991), 117.   Google Scholar

[11]

Y. Kuang and H. L. Smith, Convergence in Lotka-Volterra type diffusive delay systems without dominating instantaneous negative feedbacks,, J. Austral. Math. Soc. Ser. B, 34 (1993), 471.  doi: 10.1017/S0334270000009036.  Google Scholar

[12]

W.-T. Li, G. Lin and S. Ruan, Existence of traveling wave solutions in delayed reaction-diffusion systems with application to diffusion-competition system,, Nonlinearity, 19 (2006), 1253.  doi: 10.1088/0951-7715/19/6/003.  Google Scholar

[13]

W.-T. Li, X.-P. Yan and C.-H. Zhang, Stability and Hopf bifurcation for a delayed cooperation diffusion system with Dirichlet boundary conditions,, Chaos, 38 (2008), 227.  doi: 10.1016/j.chaos.2006.11.015.  Google Scholar

[14]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983).   Google Scholar

[15]

K. Ryu and I. Ahn, Positive coexistence of steady states for competitive interacting system with self-diffusion pressures,, Bull. Korean Math. Soc., 38 (2001), 643.   Google Scholar

[16]

S. Ruan, Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays,, Quart. Appl. Math., 59 (2001), 159.   Google Scholar

[17]

Y. Su, J. Wei and J. Shi, Hopf bifurcations in a reaction-diffusion population model with delay effect,, J. Differential Equations, 247 (2009), 1156.   Google Scholar

[18]

C. Travis and G. Webb, Existence and stability for partial functional differential equations,, Trans. Amer. Math. Soc., 200 (1974), 395.  doi: 10.1090/S0002-9947-1974-0382808-3.  Google Scholar

[19]

J. Wu, "Theory and Applications of Partial Functional-Differential Equations,", Applied Mathematical Sciences, 119 (1996).   Google Scholar

[20]

X.-P. Yan and W.-T. Li, Stability and Hopf bifurcation for a delayed cooperative system with diffusion effects,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 441.  doi: 10.1142/S0218127408020434.  Google Scholar

[21]

X.-P. Yan and W.-T. Li, Stability of bifurcated periodic solutions in a delayed competition system with diffusion effects,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 857.  doi: 10.1142/S0218127409023342.  Google Scholar

[22]

X.-P. Yan and C.-H. Zhang, Direction of Hopf bifurcation in a delayed Lotka-Volterra competition diffusion system,, Nonlinear Anal. Real World Appl., 10 (2009), 2758.  doi: 10.1016/j.nonrwa.2008.08.004.  Google Scholar

[23]

X.-P. Yan and C.-H. Zhang, Asymptotic stability of positive equilibrium solution for a delayed prey-predator diffusion system,, Appl. Math. Model., 34 (2010), 184.  doi: 10.1016/j.apm.2009.03.040.  Google Scholar

[24]

Y. Yang and J. W.-H. So, Dynamics for the diffusive Nicholson's blowflies equation,, in, (1996), 333.   Google Scholar

[25]

Q. Ye and Z. Li, "An Introduction to Reaction-Diffusion Equations,", (in Chinese), (1990).   Google Scholar

[26]

K. Yosida, "Functional Analysis,", Reprint of the sixth (1980) edition, (1980).   Google Scholar

[27]

L. Zhou, Y. Tang and S. Hussein, Stability and Hopf bifurcation for a delay competition diffusion system,, Chaos Solitons Fractals, 14 (2002), 1201.  doi: 10.1016/S0960-0779(02)00068-1.  Google Scholar

show all references

References:
[1]

S. Busenberg and W. Huang, Stability and Hopf bifurcation for a population delay model with diffusion effects,, J. Differential Equations, 124 (1996), 80.   Google Scholar

[2]

S. N. Chow and J. K. Hale, "Methods of Bifurcation Theory,", Grundlehren der Mathematischen Wissenschaften, 251 (1982).   Google Scholar

[3]

G. E. Hutchinson, Circular causal systems in ecology,, Ann. New York Acad. Sci., 50 (1948), 221.  doi: 10.1111/j.1749-6632.1948.tb39854.x.  Google Scholar

[4]

L. C. Evans, "Partial Differential Equations,", 2nd edition, 19 (2010).   Google Scholar

[5]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion,, J. Math. Anal. Appl., 254 (2001), 433.   Google Scholar

[6]

J. A. Goldstein, "Semigroups of Linear Operators and Applications,", Oxford Mathematical Monographs, (1985).   Google Scholar

[7]

J. Hale, "Theory of Functional Differential Equations,", 2nd edition, 3 (1977).   Google Scholar

[8]

W. Huang, Global Dynamics for a Reaction-Diffusion Equation with Time Delay,, J. Differential Equations, 143 (1998), 293.   Google Scholar

[9]

H. Kielhöfer, "Bifurcation Theory. An Introduction with Applications to PDEs,", Applied Mathematical Sciences, 156 (2004).   Google Scholar

[10]

Y. Kuang and H. L. Smith, Global stability in diffusive delay Lotka-Volterra systems,, Differential Integral Equations, 4 (1991), 117.   Google Scholar

[11]

Y. Kuang and H. L. Smith, Convergence in Lotka-Volterra type diffusive delay systems without dominating instantaneous negative feedbacks,, J. Austral. Math. Soc. Ser. B, 34 (1993), 471.  doi: 10.1017/S0334270000009036.  Google Scholar

[12]

W.-T. Li, G. Lin and S. Ruan, Existence of traveling wave solutions in delayed reaction-diffusion systems with application to diffusion-competition system,, Nonlinearity, 19 (2006), 1253.  doi: 10.1088/0951-7715/19/6/003.  Google Scholar

[13]

W.-T. Li, X.-P. Yan and C.-H. Zhang, Stability and Hopf bifurcation for a delayed cooperation diffusion system with Dirichlet boundary conditions,, Chaos, 38 (2008), 227.  doi: 10.1016/j.chaos.2006.11.015.  Google Scholar

[14]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983).   Google Scholar

[15]

K. Ryu and I. Ahn, Positive coexistence of steady states for competitive interacting system with self-diffusion pressures,, Bull. Korean Math. Soc., 38 (2001), 643.   Google Scholar

[16]

S. Ruan, Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays,, Quart. Appl. Math., 59 (2001), 159.   Google Scholar

[17]

Y. Su, J. Wei and J. Shi, Hopf bifurcations in a reaction-diffusion population model with delay effect,, J. Differential Equations, 247 (2009), 1156.   Google Scholar

[18]

C. Travis and G. Webb, Existence and stability for partial functional differential equations,, Trans. Amer. Math. Soc., 200 (1974), 395.  doi: 10.1090/S0002-9947-1974-0382808-3.  Google Scholar

[19]

J. Wu, "Theory and Applications of Partial Functional-Differential Equations,", Applied Mathematical Sciences, 119 (1996).   Google Scholar

[20]

X.-P. Yan and W.-T. Li, Stability and Hopf bifurcation for a delayed cooperative system with diffusion effects,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 441.  doi: 10.1142/S0218127408020434.  Google Scholar

[21]

X.-P. Yan and W.-T. Li, Stability of bifurcated periodic solutions in a delayed competition system with diffusion effects,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 857.  doi: 10.1142/S0218127409023342.  Google Scholar

[22]

X.-P. Yan and C.-H. Zhang, Direction of Hopf bifurcation in a delayed Lotka-Volterra competition diffusion system,, Nonlinear Anal. Real World Appl., 10 (2009), 2758.  doi: 10.1016/j.nonrwa.2008.08.004.  Google Scholar

[23]

X.-P. Yan and C.-H. Zhang, Asymptotic stability of positive equilibrium solution for a delayed prey-predator diffusion system,, Appl. Math. Model., 34 (2010), 184.  doi: 10.1016/j.apm.2009.03.040.  Google Scholar

[24]

Y. Yang and J. W.-H. So, Dynamics for the diffusive Nicholson's blowflies equation,, in, (1996), 333.   Google Scholar

[25]

Q. Ye and Z. Li, "An Introduction to Reaction-Diffusion Equations,", (in Chinese), (1990).   Google Scholar

[26]

K. Yosida, "Functional Analysis,", Reprint of the sixth (1980) edition, (1980).   Google Scholar

[27]

L. Zhou, Y. Tang and S. Hussein, Stability and Hopf bifurcation for a delay competition diffusion system,, Chaos Solitons Fractals, 14 (2002), 1201.  doi: 10.1016/S0960-0779(02)00068-1.  Google Scholar

[1]

Qi Wang. On steady state of some Lotka-Volterra competition-diffusion-advection model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019193

[2]

Fuke Wu, Yangzi Hu. Stochastic Lotka-Volterra system with unbounded distributed delay. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 275-288. doi: 10.3934/dcdsb.2010.14.275

[3]

Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559

[4]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[5]

Fang Li, Liping Wang, Yang Wang. On the effects of migration and inter-specific competitions in steady state of some Lotka-Volterra model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 669-686. doi: 10.3934/dcdsb.2011.15.669

[6]

Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135

[7]

S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173

[8]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[9]

Yuzo Hosono. Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 161-171. doi: 10.3934/dcdsb.2015.20.161

[10]

Li-Jun Du, Wan-Tong Li, Jia-Bing Wang. Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1187-1213. doi: 10.3934/mbe.2017061

[11]

Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147

[12]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

[13]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[14]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[15]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

[16]

Linping Peng, Zhaosheng Feng, Changjian Liu. Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4807-4826. doi: 10.3934/dcds.2014.34.4807

[17]

Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239

[18]

Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171

[19]

Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195

[20]

Michael Y. Li, Xihui Lin, Hao Wang. Global Hopf branches and multiple limit cycles in a delayed Lotka-Volterra predator-prey model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 747-760. doi: 10.3934/dcdsb.2014.19.747

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]