January  2012, 17(1): 367-399. doi: 10.3934/dcdsb.2012.17.367

Stability and Hopf bifurcations for a delayed diffusion system in population dynamics

1. 

Department of Mathematics, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China

2. 

School of Mathematic and Statistics, Lanzhou University, Lanzhou, Gansu 730000

Received  December 2010 Revised  February 2011 Published  October 2011

A generalized two-species Lotka-Volterra reaction-diffusion system with a discrete delay and subject to homogeneous Dirichlet boundary conditions is considered. By regarding the delay as the bifurcation parameter and analyzing in detail the spectrum of the associated linear operator, the stability of the positive steady state bifurcating from the zero solution is studied. In particular, it is shown that the system can undergo a forward Hopf bifurcation at the positive steady state solution when the delay take a sequence of critical values via the implicit function theorem. To verify the obtained theoretical results, some numerical simulations are also included.
Citation: Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367
References:
[1]

S. Busenberg and W. Huang, Stability and Hopf bifurcation for a population delay model with diffusion effects,, J. Differential Equations, 124 (1996), 80.   Google Scholar

[2]

S. N. Chow and J. K. Hale, "Methods of Bifurcation Theory,", Grundlehren der Mathematischen Wissenschaften, 251 (1982).   Google Scholar

[3]

G. E. Hutchinson, Circular causal systems in ecology,, Ann. New York Acad. Sci., 50 (1948), 221.  doi: 10.1111/j.1749-6632.1948.tb39854.x.  Google Scholar

[4]

L. C. Evans, "Partial Differential Equations,", 2nd edition, 19 (2010).   Google Scholar

[5]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion,, J. Math. Anal. Appl., 254 (2001), 433.   Google Scholar

[6]

J. A. Goldstein, "Semigroups of Linear Operators and Applications,", Oxford Mathematical Monographs, (1985).   Google Scholar

[7]

J. Hale, "Theory of Functional Differential Equations,", 2nd edition, 3 (1977).   Google Scholar

[8]

W. Huang, Global Dynamics for a Reaction-Diffusion Equation with Time Delay,, J. Differential Equations, 143 (1998), 293.   Google Scholar

[9]

H. Kielhöfer, "Bifurcation Theory. An Introduction with Applications to PDEs,", Applied Mathematical Sciences, 156 (2004).   Google Scholar

[10]

Y. Kuang and H. L. Smith, Global stability in diffusive delay Lotka-Volterra systems,, Differential Integral Equations, 4 (1991), 117.   Google Scholar

[11]

Y. Kuang and H. L. Smith, Convergence in Lotka-Volterra type diffusive delay systems without dominating instantaneous negative feedbacks,, J. Austral. Math. Soc. Ser. B, 34 (1993), 471.  doi: 10.1017/S0334270000009036.  Google Scholar

[12]

W.-T. Li, G. Lin and S. Ruan, Existence of traveling wave solutions in delayed reaction-diffusion systems with application to diffusion-competition system,, Nonlinearity, 19 (2006), 1253.  doi: 10.1088/0951-7715/19/6/003.  Google Scholar

[13]

W.-T. Li, X.-P. Yan and C.-H. Zhang, Stability and Hopf bifurcation for a delayed cooperation diffusion system with Dirichlet boundary conditions,, Chaos, 38 (2008), 227.  doi: 10.1016/j.chaos.2006.11.015.  Google Scholar

[14]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983).   Google Scholar

[15]

K. Ryu and I. Ahn, Positive coexistence of steady states for competitive interacting system with self-diffusion pressures,, Bull. Korean Math. Soc., 38 (2001), 643.   Google Scholar

[16]

S. Ruan, Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays,, Quart. Appl. Math., 59 (2001), 159.   Google Scholar

[17]

Y. Su, J. Wei and J. Shi, Hopf bifurcations in a reaction-diffusion population model with delay effect,, J. Differential Equations, 247 (2009), 1156.   Google Scholar

[18]

C. Travis and G. Webb, Existence and stability for partial functional differential equations,, Trans. Amer. Math. Soc., 200 (1974), 395.  doi: 10.1090/S0002-9947-1974-0382808-3.  Google Scholar

[19]

J. Wu, "Theory and Applications of Partial Functional-Differential Equations,", Applied Mathematical Sciences, 119 (1996).   Google Scholar

[20]

X.-P. Yan and W.-T. Li, Stability and Hopf bifurcation for a delayed cooperative system with diffusion effects,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 441.  doi: 10.1142/S0218127408020434.  Google Scholar

[21]

X.-P. Yan and W.-T. Li, Stability of bifurcated periodic solutions in a delayed competition system with diffusion effects,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 857.  doi: 10.1142/S0218127409023342.  Google Scholar

[22]

X.-P. Yan and C.-H. Zhang, Direction of Hopf bifurcation in a delayed Lotka-Volterra competition diffusion system,, Nonlinear Anal. Real World Appl., 10 (2009), 2758.  doi: 10.1016/j.nonrwa.2008.08.004.  Google Scholar

[23]

X.-P. Yan and C.-H. Zhang, Asymptotic stability of positive equilibrium solution for a delayed prey-predator diffusion system,, Appl. Math. Model., 34 (2010), 184.  doi: 10.1016/j.apm.2009.03.040.  Google Scholar

[24]

Y. Yang and J. W.-H. So, Dynamics for the diffusive Nicholson's blowflies equation,, in, (1996), 333.   Google Scholar

[25]

Q. Ye and Z. Li, "An Introduction to Reaction-Diffusion Equations,", (in Chinese), (1990).   Google Scholar

[26]

K. Yosida, "Functional Analysis,", Reprint of the sixth (1980) edition, (1980).   Google Scholar

[27]

L. Zhou, Y. Tang and S. Hussein, Stability and Hopf bifurcation for a delay competition diffusion system,, Chaos Solitons Fractals, 14 (2002), 1201.  doi: 10.1016/S0960-0779(02)00068-1.  Google Scholar

show all references

References:
[1]

S. Busenberg and W. Huang, Stability and Hopf bifurcation for a population delay model with diffusion effects,, J. Differential Equations, 124 (1996), 80.   Google Scholar

[2]

S. N. Chow and J. K. Hale, "Methods of Bifurcation Theory,", Grundlehren der Mathematischen Wissenschaften, 251 (1982).   Google Scholar

[3]

G. E. Hutchinson, Circular causal systems in ecology,, Ann. New York Acad. Sci., 50 (1948), 221.  doi: 10.1111/j.1749-6632.1948.tb39854.x.  Google Scholar

[4]

L. C. Evans, "Partial Differential Equations,", 2nd edition, 19 (2010).   Google Scholar

[5]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion,, J. Math. Anal. Appl., 254 (2001), 433.   Google Scholar

[6]

J. A. Goldstein, "Semigroups of Linear Operators and Applications,", Oxford Mathematical Monographs, (1985).   Google Scholar

[7]

J. Hale, "Theory of Functional Differential Equations,", 2nd edition, 3 (1977).   Google Scholar

[8]

W. Huang, Global Dynamics for a Reaction-Diffusion Equation with Time Delay,, J. Differential Equations, 143 (1998), 293.   Google Scholar

[9]

H. Kielhöfer, "Bifurcation Theory. An Introduction with Applications to PDEs,", Applied Mathematical Sciences, 156 (2004).   Google Scholar

[10]

Y. Kuang and H. L. Smith, Global stability in diffusive delay Lotka-Volterra systems,, Differential Integral Equations, 4 (1991), 117.   Google Scholar

[11]

Y. Kuang and H. L. Smith, Convergence in Lotka-Volterra type diffusive delay systems without dominating instantaneous negative feedbacks,, J. Austral. Math. Soc. Ser. B, 34 (1993), 471.  doi: 10.1017/S0334270000009036.  Google Scholar

[12]

W.-T. Li, G. Lin and S. Ruan, Existence of traveling wave solutions in delayed reaction-diffusion systems with application to diffusion-competition system,, Nonlinearity, 19 (2006), 1253.  doi: 10.1088/0951-7715/19/6/003.  Google Scholar

[13]

W.-T. Li, X.-P. Yan and C.-H. Zhang, Stability and Hopf bifurcation for a delayed cooperation diffusion system with Dirichlet boundary conditions,, Chaos, 38 (2008), 227.  doi: 10.1016/j.chaos.2006.11.015.  Google Scholar

[14]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983).   Google Scholar

[15]

K. Ryu and I. Ahn, Positive coexistence of steady states for competitive interacting system with self-diffusion pressures,, Bull. Korean Math. Soc., 38 (2001), 643.   Google Scholar

[16]

S. Ruan, Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays,, Quart. Appl. Math., 59 (2001), 159.   Google Scholar

[17]

Y. Su, J. Wei and J. Shi, Hopf bifurcations in a reaction-diffusion population model with delay effect,, J. Differential Equations, 247 (2009), 1156.   Google Scholar

[18]

C. Travis and G. Webb, Existence and stability for partial functional differential equations,, Trans. Amer. Math. Soc., 200 (1974), 395.  doi: 10.1090/S0002-9947-1974-0382808-3.  Google Scholar

[19]

J. Wu, "Theory and Applications of Partial Functional-Differential Equations,", Applied Mathematical Sciences, 119 (1996).   Google Scholar

[20]

X.-P. Yan and W.-T. Li, Stability and Hopf bifurcation for a delayed cooperative system with diffusion effects,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 441.  doi: 10.1142/S0218127408020434.  Google Scholar

[21]

X.-P. Yan and W.-T. Li, Stability of bifurcated periodic solutions in a delayed competition system with diffusion effects,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 857.  doi: 10.1142/S0218127409023342.  Google Scholar

[22]

X.-P. Yan and C.-H. Zhang, Direction of Hopf bifurcation in a delayed Lotka-Volterra competition diffusion system,, Nonlinear Anal. Real World Appl., 10 (2009), 2758.  doi: 10.1016/j.nonrwa.2008.08.004.  Google Scholar

[23]

X.-P. Yan and C.-H. Zhang, Asymptotic stability of positive equilibrium solution for a delayed prey-predator diffusion system,, Appl. Math. Model., 34 (2010), 184.  doi: 10.1016/j.apm.2009.03.040.  Google Scholar

[24]

Y. Yang and J. W.-H. So, Dynamics for the diffusive Nicholson's blowflies equation,, in, (1996), 333.   Google Scholar

[25]

Q. Ye and Z. Li, "An Introduction to Reaction-Diffusion Equations,", (in Chinese), (1990).   Google Scholar

[26]

K. Yosida, "Functional Analysis,", Reprint of the sixth (1980) edition, (1980).   Google Scholar

[27]

L. Zhou, Y. Tang and S. Hussein, Stability and Hopf bifurcation for a delay competition diffusion system,, Chaos Solitons Fractals, 14 (2002), 1201.  doi: 10.1016/S0960-0779(02)00068-1.  Google Scholar

[1]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[2]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[3]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[6]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[7]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[8]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[9]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[10]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[11]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[12]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[13]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[14]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[15]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[16]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[17]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[18]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[19]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[20]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]