-
Previous Article
Traveling wave solutions in an integro-differential competition model
- DCDS-B Home
- This Issue
-
Next Article
Stability and Hopf bifurcations for a delayed diffusion system in population dynamics
Global stability of a five-dimensional model with immune responses and delay
1. | Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China, China |
References:
[1] |
A. A. Canabarro, I. M. Gléria and M. L. Lyra, Periodic solutions and chaos in a non-linear model for the delayed cellular immune response,, Physica A, 342 (2004), 234.
doi: 10.1016/j.physa.2004.04.083. |
[2] |
R. V. Culshaw and S. G. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells,, Math. Biosci., 165 (2000), 27.
doi: 10.1016/S0025-5564(00)00006-7. |
[3] |
N. Eshima, M. Tabata, T. Okada and S. Karukaya, Population dynamics of HTLV-I infection: A discrete-time mathematical epidemic model approach,, Math. Med. Biol., 20 (2003), 29.
doi: 10.1093/imammb/20.1.29. |
[4] |
J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", Applied Mathematical Sciences, 99 (1993).
|
[5] |
V. Herz, S. Bonhoeffer, R. Anderson, R. May and M. Nowak, Viral dynamics in vivo: Limitations on estimations on intracellular delay and virus decay,, Proc. Nat. Acad. Sci., 93 (1996), 7247.
doi: 10.1073/pnas.93.14.7247. |
[6] |
Y. Iwasa, M. Franziska and M. A. Nowak, Virus evolution with patients increases pathogenicity,, J. Theor. Biol., 232 (2005), 17.
doi: 10.1016/j.jtbi.2004.07.016. |
[7] |
M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, Bull. Math. Biol., 72 (2010), 1492.
doi: 10.1007/s11538-010-9503-x. |
[8] |
J. M. Murray, R. H. Purcell and S. F. Wieland, The half-life of hepatitis B virions,, Hepatology, 44 (2006), 1117.
doi: 10.1002/hep.21364. |
[9] |
P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection,, Math. Biosci., 179 (2002), 73.
doi: 10.1016/S0025-5564(02)00099-8. |
[10] |
H. Pang, W. Wang and K. Wang, Global properties of virus dynamics model with immune response,, Journal of Southwest China Normal University (Natural Science), 30 (2005), 796. Google Scholar |
[11] |
A. S. Perelson, D. E. Kirschner and R. De Boer, Dynamics of HIV-I infection of CD4 T cells,, Math. Biosci., 114 (1993), 81.
doi: 10.1016/0025-5564(93)90043-A. |
[12] |
A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard and D. D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time,, Science, 271 (1996), 1582.
doi: 10.1126/science.271.5255.1582. |
[13] |
K. Wang, W. Wang and X. Liu, Viral infection model with periodic lytic immune response,, Chaos Solitons Fractals, 28 (2006), 90.
doi: 10.1016/j.chaos.2005.05.003. |
[14] |
K. Wang, W. Wang and X. Liu, Global stability in a viral infection model with lytic and nonlytic immune responses,, Compute. Math. Appl., 51 (2006), 1593.
doi: 10.1016/j.camwa.2005.07.020. |
[15] |
D. Wodarz, Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses,, J. Gen. Virol., 84 (2003), 1743.
doi: 10.1099/vir.0.19118-0. |
[16] |
H. Zhu and X. Zou, Dynamics of a HIN-1 infection model with cell-mediated immune response and intracellular delay,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 511.
|
show all references
References:
[1] |
A. A. Canabarro, I. M. Gléria and M. L. Lyra, Periodic solutions and chaos in a non-linear model for the delayed cellular immune response,, Physica A, 342 (2004), 234.
doi: 10.1016/j.physa.2004.04.083. |
[2] |
R. V. Culshaw and S. G. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells,, Math. Biosci., 165 (2000), 27.
doi: 10.1016/S0025-5564(00)00006-7. |
[3] |
N. Eshima, M. Tabata, T. Okada and S. Karukaya, Population dynamics of HTLV-I infection: A discrete-time mathematical epidemic model approach,, Math. Med. Biol., 20 (2003), 29.
doi: 10.1093/imammb/20.1.29. |
[4] |
J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", Applied Mathematical Sciences, 99 (1993).
|
[5] |
V. Herz, S. Bonhoeffer, R. Anderson, R. May and M. Nowak, Viral dynamics in vivo: Limitations on estimations on intracellular delay and virus decay,, Proc. Nat. Acad. Sci., 93 (1996), 7247.
doi: 10.1073/pnas.93.14.7247. |
[6] |
Y. Iwasa, M. Franziska and M. A. Nowak, Virus evolution with patients increases pathogenicity,, J. Theor. Biol., 232 (2005), 17.
doi: 10.1016/j.jtbi.2004.07.016. |
[7] |
M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, Bull. Math. Biol., 72 (2010), 1492.
doi: 10.1007/s11538-010-9503-x. |
[8] |
J. M. Murray, R. H. Purcell and S. F. Wieland, The half-life of hepatitis B virions,, Hepatology, 44 (2006), 1117.
doi: 10.1002/hep.21364. |
[9] |
P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection,, Math. Biosci., 179 (2002), 73.
doi: 10.1016/S0025-5564(02)00099-8. |
[10] |
H. Pang, W. Wang and K. Wang, Global properties of virus dynamics model with immune response,, Journal of Southwest China Normal University (Natural Science), 30 (2005), 796. Google Scholar |
[11] |
A. S. Perelson, D. E. Kirschner and R. De Boer, Dynamics of HIV-I infection of CD4 T cells,, Math. Biosci., 114 (1993), 81.
doi: 10.1016/0025-5564(93)90043-A. |
[12] |
A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard and D. D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time,, Science, 271 (1996), 1582.
doi: 10.1126/science.271.5255.1582. |
[13] |
K. Wang, W. Wang and X. Liu, Viral infection model with periodic lytic immune response,, Chaos Solitons Fractals, 28 (2006), 90.
doi: 10.1016/j.chaos.2005.05.003. |
[14] |
K. Wang, W. Wang and X. Liu, Global stability in a viral infection model with lytic and nonlytic immune responses,, Compute. Math. Appl., 51 (2006), 1593.
doi: 10.1016/j.camwa.2005.07.020. |
[15] |
D. Wodarz, Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses,, J. Gen. Virol., 84 (2003), 1743.
doi: 10.1099/vir.0.19118-0. |
[16] |
H. Zhu and X. Zou, Dynamics of a HIN-1 infection model with cell-mediated immune response and intracellular delay,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 511.
|
[1] |
Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020048 |
[2] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[3] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[4] |
Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113 |
[5] |
Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251 |
[6] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[7] |
Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020341 |
[8] |
Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303 |
[9] |
Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021 doi: 10.3934/jgm.2021002 |
[10] |
Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020124 |
[11] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[12] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020104 |
[13] |
Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044 |
[14] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[15] |
Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021016 |
[16] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[17] |
Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028 |
[18] |
Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045 |
[19] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[20] |
Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]