January  2012, 17(1): 401-416. doi: 10.3934/dcdsb.2012.17.401

Global stability of a five-dimensional model with immune responses and delay

1. 

Key Laboratory of Eco-environments in Three Gorges Reservoir Region, School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China, China

Received  September 2010 Revised  December 2010 Published  October 2011

In this article, we study a virus model with immune responses and an intracellular delay which is relatively large compared with virus life-cycle and is an indispensable factor in understanding virus infections, such as HIV and HBV infections. By constructing suitable Liapunov functionals, the global dynamics of the model is completely determined by the reproductive numbers for viral infection $R_0$, for CTL immune response $R_1$, for antibody immune response $R_2$, for CTL immune competition $R_3$ and for antibody immune competition $R_4$. The global stability of the model precludes the existence of periodic solution and other complex dynamical behaviors.
Citation: Yincui Yan, Wendi Wang. Global stability of a five-dimensional model with immune responses and delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 401-416. doi: 10.3934/dcdsb.2012.17.401
References:
[1]

A. A. Canabarro, I. M. Gléria and M. L. Lyra, Periodic solutions and chaos in a non-linear model for the delayed cellular immune response,, Physica A, 342 (2004), 234. doi: 10.1016/j.physa.2004.04.083.

[2]

R. V. Culshaw and S. G. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells,, Math. Biosci., 165 (2000), 27. doi: 10.1016/S0025-5564(00)00006-7.

[3]

N. Eshima, M. Tabata, T. Okada and S. Karukaya, Population dynamics of HTLV-I infection: A discrete-time mathematical epidemic model approach,, Math. Med. Biol., 20 (2003), 29. doi: 10.1093/imammb/20.1.29.

[4]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", Applied Mathematical Sciences, 99 (1993).

[5]

V. Herz, S. Bonhoeffer, R. Anderson, R. May and M. Nowak, Viral dynamics in vivo: Limitations on estimations on intracellular delay and virus decay,, Proc. Nat. Acad. Sci., 93 (1996), 7247. doi: 10.1073/pnas.93.14.7247.

[6]

Y. Iwasa, M. Franziska and M. A. Nowak, Virus evolution with patients increases pathogenicity,, J. Theor. Biol., 232 (2005), 17. doi: 10.1016/j.jtbi.2004.07.016.

[7]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, Bull. Math. Biol., 72 (2010), 1492. doi: 10.1007/s11538-010-9503-x.

[8]

J. M. Murray, R. H. Purcell and S. F. Wieland, The half-life of hepatitis B virions,, Hepatology, 44 (2006), 1117. doi: 10.1002/hep.21364.

[9]

P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection,, Math. Biosci., 179 (2002), 73. doi: 10.1016/S0025-5564(02)00099-8.

[10]

H. Pang, W. Wang and K. Wang, Global properties of virus dynamics model with immune response,, Journal of Southwest China Normal University (Natural Science), 30 (2005), 796.

[11]

A. S. Perelson, D. E. Kirschner and R. De Boer, Dynamics of HIV-I infection of CD4 T cells,, Math. Biosci., 114 (1993), 81. doi: 10.1016/0025-5564(93)90043-A.

[12]

A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard and D. D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time,, Science, 271 (1996), 1582. doi: 10.1126/science.271.5255.1582.

[13]

K. Wang, W. Wang and X. Liu, Viral infection model with periodic lytic immune response,, Chaos Solitons Fractals, 28 (2006), 90. doi: 10.1016/j.chaos.2005.05.003.

[14]

K. Wang, W. Wang and X. Liu, Global stability in a viral infection model with lytic and nonlytic immune responses,, Compute. Math. Appl., 51 (2006), 1593. doi: 10.1016/j.camwa.2005.07.020.

[15]

D. Wodarz, Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses,, J. Gen. Virol., 84 (2003), 1743. doi: 10.1099/vir.0.19118-0.

[16]

H. Zhu and X. Zou, Dynamics of a HIN-1 infection model with cell-mediated immune response and intracellular delay,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 511.

show all references

References:
[1]

A. A. Canabarro, I. M. Gléria and M. L. Lyra, Periodic solutions and chaos in a non-linear model for the delayed cellular immune response,, Physica A, 342 (2004), 234. doi: 10.1016/j.physa.2004.04.083.

[2]

R. V. Culshaw and S. G. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells,, Math. Biosci., 165 (2000), 27. doi: 10.1016/S0025-5564(00)00006-7.

[3]

N. Eshima, M. Tabata, T. Okada and S. Karukaya, Population dynamics of HTLV-I infection: A discrete-time mathematical epidemic model approach,, Math. Med. Biol., 20 (2003), 29. doi: 10.1093/imammb/20.1.29.

[4]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional-Differential Equations,", Applied Mathematical Sciences, 99 (1993).

[5]

V. Herz, S. Bonhoeffer, R. Anderson, R. May and M. Nowak, Viral dynamics in vivo: Limitations on estimations on intracellular delay and virus decay,, Proc. Nat. Acad. Sci., 93 (1996), 7247. doi: 10.1073/pnas.93.14.7247.

[6]

Y. Iwasa, M. Franziska and M. A. Nowak, Virus evolution with patients increases pathogenicity,, J. Theor. Biol., 232 (2005), 17. doi: 10.1016/j.jtbi.2004.07.016.

[7]

M. Y. Li and H. Shu, Global dynamics of an in-host viral model with intracellular delay,, Bull. Math. Biol., 72 (2010), 1492. doi: 10.1007/s11538-010-9503-x.

[8]

J. M. Murray, R. H. Purcell and S. F. Wieland, The half-life of hepatitis B virions,, Hepatology, 44 (2006), 1117. doi: 10.1002/hep.21364.

[9]

P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection,, Math. Biosci., 179 (2002), 73. doi: 10.1016/S0025-5564(02)00099-8.

[10]

H. Pang, W. Wang and K. Wang, Global properties of virus dynamics model with immune response,, Journal of Southwest China Normal University (Natural Science), 30 (2005), 796.

[11]

A. S. Perelson, D. E. Kirschner and R. De Boer, Dynamics of HIV-I infection of CD4 T cells,, Math. Biosci., 114 (1993), 81. doi: 10.1016/0025-5564(93)90043-A.

[12]

A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard and D. D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time,, Science, 271 (1996), 1582. doi: 10.1126/science.271.5255.1582.

[13]

K. Wang, W. Wang and X. Liu, Viral infection model with periodic lytic immune response,, Chaos Solitons Fractals, 28 (2006), 90. doi: 10.1016/j.chaos.2005.05.003.

[14]

K. Wang, W. Wang and X. Liu, Global stability in a viral infection model with lytic and nonlytic immune responses,, Compute. Math. Appl., 51 (2006), 1593. doi: 10.1016/j.camwa.2005.07.020.

[15]

D. Wodarz, Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses,, J. Gen. Virol., 84 (2003), 1743. doi: 10.1099/vir.0.19118-0.

[16]

H. Zhu and X. Zou, Dynamics of a HIN-1 infection model with cell-mediated immune response and intracellular delay,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 511.

[1]

Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377

[2]

Zvi Artstein. Invariance principle in the singular perturbations limit. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-14. doi: 10.3934/dcdsb.2018309

[3]

Ariel Cintrón-Arias, Carlos Castillo-Chávez, Luís M. A. Bettencourt, Alun L. Lloyd, H. T. Banks. The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences & Engineering, 2009, 6 (2) : 261-282. doi: 10.3934/mbe.2009.6.261

[4]

Jifa Jiang, Fensidi Tang. The complete classification on a model of two species competition with an inhibitor. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 659-672. doi: 10.3934/dcds.2008.20.659

[5]

Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1533-1554. doi: 10.3934/dcdsb.2013.18.1533

[6]

Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321

[7]

Chuangye Liu, Zhi-Qiang Wang. A complete classification of ground-states for a coupled nonlinear Schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 115-130. doi: 10.3934/cpaa.2017005

[8]

Cuicui Jiang, Wendi Wang. Complete classification of global dynamics of a virus model with immune responses. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1087-1103. doi: 10.3934/dcdsb.2014.19.1087

[9]

Seyedeh Marzieh Ghavidel, Wolfgang M. Ruess. Flow invariance for nonautonomous nonlinear partial differential delay equations. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2351-2369. doi: 10.3934/cpaa.2012.11.2351

[10]

Alfonso C. Casal, Jesús Ildefonso Díaz, José Manuel Vegas. Complete recuperation after the blow up time for semilinear problems. Conference Publications, 2015, 2015 (special) : 223-229. doi: 10.3934/proc.2015.0223

[11]

Xiaowei Tang, Xilin Fu. New comparison principle with Razumikhin condition for impulsive infinite delay differential systems. Conference Publications, 2009, 2009 (Special) : 739-743. doi: 10.3934/proc.2009.2009.739

[12]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[13]

Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167

[14]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[15]

E. González-Olivares, B. González-Yañez, Eduardo Sáez, I. Szántó. On the number of limit cycles in a predator prey model with non-monotonic functional response. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 525-534. doi: 10.3934/dcdsb.2006.6.525

[16]

Marek Bodnar, Urszula Foryś. Time Delay In Necrotic Core Formation. Mathematical Biosciences & Engineering, 2005, 2 (3) : 461-472. doi: 10.3934/mbe.2005.2.461

[17]

Hermann Brunner, Stefano Maset. Time transformations for delay differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 751-775. doi: 10.3934/dcds.2009.25.751

[18]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[19]

Jesus Ildefonso Díaz, Jacqueline Fleckinger-Pellé. Positivity for large time of solutions of the heat equation: the parabolic antimaximum principle. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 193-200. doi: 10.3934/dcds.2004.10.193

[20]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations & Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]