January  2012, 17(1): 417-428. doi: 10.3934/dcdsb.2012.17.417

Traveling wave solutions in an integro-differential competition model

1. 

Institute of Applied Mathematics, College of Science, Northwest A & F University, Yangling, Shaanxi 712100, China

2. 

Department of Mathematics, University of Louisville, Louisville, KY 40292

Received  June 2010 Revised  April 2011 Published  October 2011

We study the existence of traveling wave solutions for the two-species Lotka-Volterra competition model in the form of integro-differential equations. The model incorporates asymmetric dispersal kernels that describe long distance dispersal processes of competing species in space. Using lower and upper traveling wave solutions, we show that the model has traveling wave solutions that connect the origin and the coexistence equilibrium with speeds greater than the spreading speed of each species in the absence of its rival.
Citation: Liang Zhang, Bingtuan Li. Traveling wave solutions in an integro-differential competition model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 417-428. doi: 10.3934/dcdsb.2012.17.417
References:
[1]

D. Aronson, The asymptotic speed of propagation of a simple epidemic,, in, 14 (1977), 1.   Google Scholar

[2]

P. W. Bates, P. C. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transition,, Arch. Rational. Mech. Anal., 138 (1997), 105.   Google Scholar

[3]

S. Fedotov, Front propagation into an unstable state of reaction-transport systems,, Phys. Rev. Lett., 86 (2001), 926.  doi: 10.1103/PhysRevLett.86.926.  Google Scholar

[4]

M. A. Lewis, B. Li and H. F. Weinberger, Spreading speeds and linear determinancy for two-species competition models,, J. Math. Biol., 45 (2002), 219.  doi: 10.1007/s002850200144.  Google Scholar

[5]

B. Li, M. A. Lewis and H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions,, J. Math. Biol., 58 (2009), 323.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[6]

W.-T. Li, G. Lin and S. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with application to diffusion-competition systems,, Nonlinearity, 19 (2006), 1253.  doi: 10.1088/0951-7715/19/6/003.  Google Scholar

[7]

F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations,, SIAM Rev., 47 (2005), 749.  doi: 10.1137/050636152.  Google Scholar

[8]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[9]

V. Méndez, T. Pujol and J. Fort, Dispersal probability distributions and the wave-front speed problem,, Phys. Rev. E., 65 (2002), 1.   Google Scholar

[10]

K. Müller, "Investigations on the Organic Drift in North Swedish Streams,", Tech. Report 34, (1954).   Google Scholar

[11]

K. Müller, Stream drift as a chronobiological phenomenon in running water ecosystems,, Ann. Rev. Eco. Sys., 5 (1974), 309.  doi: 10.1146/annurev.es.05.110174.001521.  Google Scholar

[12]

J. D. Murray, "Mathematical Biology I: An Introduction,", Third edition, 17 (2002).   Google Scholar

[13]

J. D. Murray, "Mathematical Biology II: Spatial Models and Biomedical Applications,", Third edition, 18 (2003).   Google Scholar

[14]

A. Nilsson, Coleoptera from a Malaise-trap placed across a coastal stream in northern Sweden,, Fauna Norrlandica, 3 (1981), 1.   Google Scholar

[15]

A. Okubo and S. Levin, "Diffusion and Ecological Problems: Modern Perspectives,", Second edition, 14 (2001).   Google Scholar

[16]

W. D. Pearson and R. H. Kramer, Drift and production of two aquatic insects in a mountain stream,, Ecol. Monogr., 42 (1972), 365.  doi: 10.2307/1942214.  Google Scholar

[17]

T. Roos, Studies on upstream migration in adult streamdwelling insects,, Inst. Freshwater Res. Drottningholm, (): 167.   Google Scholar

[18]

W. Rudin, "Functional Analysis,", Second edition, (1991).   Google Scholar

[19]

N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice,", Oxford University Press, (1997).   Google Scholar

[20]

M. M. Tang and P. Fife, Propagating fronts for competing species equations with diffusion,, Arch. Ration. Mech. Anal., 73 (1980), 69.  doi: 10.1007/BF00283257.  Google Scholar

[21]

D. Tilman and P. Kareiva, "Spatial Ecology,", Princeton University Press, (1997).   Google Scholar

[22]

D. Volkov and R. Lui, Spreading speed and travelling wave solutions of a partially sedentary population,, IMA. J. Appl. Math., 72 (2007), 801.  doi: 10.1093/imamat/hxm025.  Google Scholar

[23]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

[24]

L. Zhang, "Traveling Wave Solutions and Periodic Solutions for Several Classes of Nonlinear Population Models,", Ph.D thesis, (2011).   Google Scholar

show all references

References:
[1]

D. Aronson, The asymptotic speed of propagation of a simple epidemic,, in, 14 (1977), 1.   Google Scholar

[2]

P. W. Bates, P. C. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transition,, Arch. Rational. Mech. Anal., 138 (1997), 105.   Google Scholar

[3]

S. Fedotov, Front propagation into an unstable state of reaction-transport systems,, Phys. Rev. Lett., 86 (2001), 926.  doi: 10.1103/PhysRevLett.86.926.  Google Scholar

[4]

M. A. Lewis, B. Li and H. F. Weinberger, Spreading speeds and linear determinancy for two-species competition models,, J. Math. Biol., 45 (2002), 219.  doi: 10.1007/s002850200144.  Google Scholar

[5]

B. Li, M. A. Lewis and H. F. Weinberger, Existence of traveling waves for integral recursions with nonmonotone growth functions,, J. Math. Biol., 58 (2009), 323.  doi: 10.1007/s00285-008-0175-1.  Google Scholar

[6]

W.-T. Li, G. Lin and S. Ruan, Existence of travelling wave solutions in delayed reaction-diffusion systems with application to diffusion-competition systems,, Nonlinearity, 19 (2006), 1253.  doi: 10.1088/0951-7715/19/6/003.  Google Scholar

[7]

F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations,, SIAM Rev., 47 (2005), 749.  doi: 10.1137/050636152.  Google Scholar

[8]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[9]

V. Méndez, T. Pujol and J. Fort, Dispersal probability distributions and the wave-front speed problem,, Phys. Rev. E., 65 (2002), 1.   Google Scholar

[10]

K. Müller, "Investigations on the Organic Drift in North Swedish Streams,", Tech. Report 34, (1954).   Google Scholar

[11]

K. Müller, Stream drift as a chronobiological phenomenon in running water ecosystems,, Ann. Rev. Eco. Sys., 5 (1974), 309.  doi: 10.1146/annurev.es.05.110174.001521.  Google Scholar

[12]

J. D. Murray, "Mathematical Biology I: An Introduction,", Third edition, 17 (2002).   Google Scholar

[13]

J. D. Murray, "Mathematical Biology II: Spatial Models and Biomedical Applications,", Third edition, 18 (2003).   Google Scholar

[14]

A. Nilsson, Coleoptera from a Malaise-trap placed across a coastal stream in northern Sweden,, Fauna Norrlandica, 3 (1981), 1.   Google Scholar

[15]

A. Okubo and S. Levin, "Diffusion and Ecological Problems: Modern Perspectives,", Second edition, 14 (2001).   Google Scholar

[16]

W. D. Pearson and R. H. Kramer, Drift and production of two aquatic insects in a mountain stream,, Ecol. Monogr., 42 (1972), 365.  doi: 10.2307/1942214.  Google Scholar

[17]

T. Roos, Studies on upstream migration in adult streamdwelling insects,, Inst. Freshwater Res. Drottningholm, (): 167.   Google Scholar

[18]

W. Rudin, "Functional Analysis,", Second edition, (1991).   Google Scholar

[19]

N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice,", Oxford University Press, (1997).   Google Scholar

[20]

M. M. Tang and P. Fife, Propagating fronts for competing species equations with diffusion,, Arch. Ration. Mech. Anal., 73 (1980), 69.  doi: 10.1007/BF00283257.  Google Scholar

[21]

D. Tilman and P. Kareiva, "Spatial Ecology,", Princeton University Press, (1997).   Google Scholar

[22]

D. Volkov and R. Lui, Spreading speed and travelling wave solutions of a partially sedentary population,, IMA. J. Appl. Math., 72 (2007), 801.  doi: 10.1093/imamat/hxm025.  Google Scholar

[23]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

[24]

L. Zhang, "Traveling Wave Solutions and Periodic Solutions for Several Classes of Nonlinear Population Models,", Ph.D thesis, (2011).   Google Scholar

[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[3]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[4]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[5]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[6]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[7]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[8]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[9]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[10]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[11]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[12]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[13]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[14]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[15]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[16]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[17]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[18]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[19]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[20]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]