March  2012, 17(2): 487-507. doi: 10.3934/dcdsb.2012.17.487

Vector-valued obstacle problems for non-local energies

1. 

Dip. Mat. “U. Dini”, Università di Firenze, V.le Morgagni 67/A, I-50134 Firenze

Received  November 2010 Revised  March 2011 Published  December 2011

We investigate the asymptotics of obstacle problems for non-local energies in a vector-valued setting. Motivations arise, in particular, in phase field models for ferroelectric materials and variational theories for dislocations.
Citation: Matteo Focardi. Vector-valued obstacle problems for non-local energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 487-507. doi: 10.3934/dcdsb.2012.17.487
References:
[1]

R. A. Adams, "Lecture Notes on $L^p$-Potential Theory,'', Department of Math., (1981).   Google Scholar

[2]

N. Ansini and A. Braides, Asymptotic analysis of periodically-perforated nonlinear media,, J. Math. Pures Appl. (9), 81 (2002), 439.  doi: 10.1016/S0021-7824(01)01226-0.  Google Scholar

[3]

J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces,, in, (2001), 439.   Google Scholar

[4]

A. Braides, "$\Gamma$-Convergence for Beginners,'', Oxford Lecture Series in Mathematics and its Applications, 22 (2002).   Google Scholar

[5]

A. Braides and A. Defranceschi, "Homogenization of Multiple Integrals,'', Oxford Lecture Series in Mathematics and its Applications, 12 (1998).   Google Scholar

[6]

H. Brezis, How to recognize constant functions. A connection with Sobolev spaces,, Russian Math. Surveys, 57 (2002), 693.  doi: 10.1070/RM2002v057n04ABEH000533.  Google Scholar

[7]

H. Brezis and L. Nirenberg, Degree theory and BMO. I. Compact manifolds without boundaries,, Selecta Math. (N.S.), 1 (1995), 197.   Google Scholar

[8]

L. Caffarelli and A. Mellet, Random homogenization of an obstacle problem,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 375.   Google Scholar

[9]

L. Caffarelli and A. Mellet, Random homogenization of fractional obstacle problems,, Netw. Heterog. Media, 3 (2008), 523.  doi: 10.3934/nhm.2008.3.523.  Google Scholar

[10]

L. Caffarelli and L. Silvestre, An extension problem related to fractional Laplacians,, Comm. Partial Differential Equations, 32 (2007), 1245.   Google Scholar

[11]

S. Conti, A. Garroni and S. Müller, Singular kernels, multiscale decomposition of microstructure, and dislocation models,, Arch. Rational Mech. Anal., 199 (2011), 779.  doi: 10.1007/s00205-010-0333-7.  Google Scholar

[12]

Ş. Costea, Strong $A_\infty$-weights and scaling invariant Besov capacities,, Rev. Mat. Iberoam., 23 (2007), 1067.   Google Scholar

[13]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence,'', Progress in Nonlinear Differential Equations and their Applications, 8 (1993).   Google Scholar

[14]

F. Daví and P. M. Mariano, Evolution of domain walls in ferroelectric solids,, J. Mech. Phys. Solids, 49 (2001), 1701.  doi: 10.1016/S0022-5096(01)00014-X.  Google Scholar

[15]

M. Focardi, Homogenization of random fractional obstacle problems via $\Gamma$-convergence,, Comm. Partial Differential Equations, 34 (2009), 1607.   Google Scholar

[16]

M. Focardi, Aperiodic fractional obstacle problems,, Adv. Math., 225 (2010), 3502.  doi: 10.1016/j.aim.2010.06.014.  Google Scholar

[17]

M. Focardi and A. Garroni, A $1D$ macroscopic phase field model for dislocations and a second order $\Gamma$-limit,, Multiscale Model. Simul., 6 (2007), 1098.   Google Scholar

[18]

A. Garroni and S. Müller, $\Gamma$-limit of a phase-field model of dislocations,, SIAM J. Math. Anal., 36 (2005), 1943.   Google Scholar

[19]

A. Garroni and S. Müller, A variational model for dislocations in the line tension limit,, Arch. Ration. Mech. Anal., 181 (2006), 535.  doi: 10.1007/s00205-006-0432-7.  Google Scholar

[20]

J. Heinonen, T. Kilpeläinen and O. Martio, "Nonlinear Potential Theory of Degenerate Elliptic Equations,'', Oxford Mathematical Monographs, (1993).   Google Scholar

[21]

M. Koslowski, A. M. Cuitiño and M. Ortiz, A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals,, J. Mech. Phys. Solids, 50 (2002), 2597.  doi: 10.1016/S0022-5096(02)00037-6.  Google Scholar

[22]

O. Savin and E. Valdinoci, $\Gamma$-convergence for nonlocal phase transitions,, preprint, ().   Google Scholar

[23]

M. Senechal, "Quasicrystals and Geometry,'', Cambridge University Press, (1995).   Google Scholar

[24]

L. Sigalotti, Asymptotic analysis of periodically-perforated nonlinear media at the critical exponent,, Commun. Contemp. Math., 11 (2009), 1009.  doi: 10.1142/S0219199709003648.  Google Scholar

[25]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,'', North-Holland Mathematical Library, 18 (1978).   Google Scholar

show all references

References:
[1]

R. A. Adams, "Lecture Notes on $L^p$-Potential Theory,'', Department of Math., (1981).   Google Scholar

[2]

N. Ansini and A. Braides, Asymptotic analysis of periodically-perforated nonlinear media,, J. Math. Pures Appl. (9), 81 (2002), 439.  doi: 10.1016/S0021-7824(01)01226-0.  Google Scholar

[3]

J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces,, in, (2001), 439.   Google Scholar

[4]

A. Braides, "$\Gamma$-Convergence for Beginners,'', Oxford Lecture Series in Mathematics and its Applications, 22 (2002).   Google Scholar

[5]

A. Braides and A. Defranceschi, "Homogenization of Multiple Integrals,'', Oxford Lecture Series in Mathematics and its Applications, 12 (1998).   Google Scholar

[6]

H. Brezis, How to recognize constant functions. A connection with Sobolev spaces,, Russian Math. Surveys, 57 (2002), 693.  doi: 10.1070/RM2002v057n04ABEH000533.  Google Scholar

[7]

H. Brezis and L. Nirenberg, Degree theory and BMO. I. Compact manifolds without boundaries,, Selecta Math. (N.S.), 1 (1995), 197.   Google Scholar

[8]

L. Caffarelli and A. Mellet, Random homogenization of an obstacle problem,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 375.   Google Scholar

[9]

L. Caffarelli and A. Mellet, Random homogenization of fractional obstacle problems,, Netw. Heterog. Media, 3 (2008), 523.  doi: 10.3934/nhm.2008.3.523.  Google Scholar

[10]

L. Caffarelli and L. Silvestre, An extension problem related to fractional Laplacians,, Comm. Partial Differential Equations, 32 (2007), 1245.   Google Scholar

[11]

S. Conti, A. Garroni and S. Müller, Singular kernels, multiscale decomposition of microstructure, and dislocation models,, Arch. Rational Mech. Anal., 199 (2011), 779.  doi: 10.1007/s00205-010-0333-7.  Google Scholar

[12]

Ş. Costea, Strong $A_\infty$-weights and scaling invariant Besov capacities,, Rev. Mat. Iberoam., 23 (2007), 1067.   Google Scholar

[13]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence,'', Progress in Nonlinear Differential Equations and their Applications, 8 (1993).   Google Scholar

[14]

F. Daví and P. M. Mariano, Evolution of domain walls in ferroelectric solids,, J. Mech. Phys. Solids, 49 (2001), 1701.  doi: 10.1016/S0022-5096(01)00014-X.  Google Scholar

[15]

M. Focardi, Homogenization of random fractional obstacle problems via $\Gamma$-convergence,, Comm. Partial Differential Equations, 34 (2009), 1607.   Google Scholar

[16]

M. Focardi, Aperiodic fractional obstacle problems,, Adv. Math., 225 (2010), 3502.  doi: 10.1016/j.aim.2010.06.014.  Google Scholar

[17]

M. Focardi and A. Garroni, A $1D$ macroscopic phase field model for dislocations and a second order $\Gamma$-limit,, Multiscale Model. Simul., 6 (2007), 1098.   Google Scholar

[18]

A. Garroni and S. Müller, $\Gamma$-limit of a phase-field model of dislocations,, SIAM J. Math. Anal., 36 (2005), 1943.   Google Scholar

[19]

A. Garroni and S. Müller, A variational model for dislocations in the line tension limit,, Arch. Ration. Mech. Anal., 181 (2006), 535.  doi: 10.1007/s00205-006-0432-7.  Google Scholar

[20]

J. Heinonen, T. Kilpeläinen and O. Martio, "Nonlinear Potential Theory of Degenerate Elliptic Equations,'', Oxford Mathematical Monographs, (1993).   Google Scholar

[21]

M. Koslowski, A. M. Cuitiño and M. Ortiz, A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals,, J. Mech. Phys. Solids, 50 (2002), 2597.  doi: 10.1016/S0022-5096(02)00037-6.  Google Scholar

[22]

O. Savin and E. Valdinoci, $\Gamma$-convergence for nonlocal phase transitions,, preprint, ().   Google Scholar

[23]

M. Senechal, "Quasicrystals and Geometry,'', Cambridge University Press, (1995).   Google Scholar

[24]

L. Sigalotti, Asymptotic analysis of periodically-perforated nonlinear media at the critical exponent,, Commun. Contemp. Math., 11 (2009), 1009.  doi: 10.1142/S0219199709003648.  Google Scholar

[25]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,'', North-Holland Mathematical Library, 18 (1978).   Google Scholar

[1]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[2]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[3]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[4]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[5]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[6]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[7]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[8]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[9]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[10]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[11]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[12]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[13]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[14]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[15]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[16]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[17]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[18]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[19]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[20]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]