June  2012, 17(4): i-ii. doi: 10.3934/dcdsb.2012.17.4i

Preface

1. 

Mathematics Department, Duke University, Box 90320, Durham, NC 27708-0320, United States

2. 

Department of Mathematics, Drexel University, Philadelphia, PA 19104

3. 

520 Portola Plaza, Math Sciences Building 6363, Los Angeles, CA 90095

4. 

Department of Mathematics, Duke University, Durham, NC 27708

5. 

Center For Research in Scientific Computation & Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205

6. 

Mathematics Dept., CB3250, Univ. of North Carolina, Chapel Hill, NC, 27599

Published  February 2012

Studies of problems in fluid dynamics have spurred research in many areas of mathematics, from rigorous analysis of nonlinear partial differential equations, to numerical analysis, to modeling and applied analysis of related physical systems. This special issue of Discrete and Continuous Dynamical Systems Series B is dedicated to our friend and colleague Tom Beale in recognition of his important contributions to these areas.

For more information please click the "Full Text" above.
Citation: Thomas P. Witelski, David M. Ambrose, Andrea Bertozzi, Anita T. Layton, Zhilin Li, Michael L. Minion. Preface. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : i-ii. doi: 10.3934/dcdsb.2012.17.4i
References:
[1]

J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the $3$-D Euler equations,, Comm. Math. Phys., 94 (1984), 61. Google Scholar

[2]

J. Thomas Beale, The existence of solitary water waves,, Comm. Pure Appl. Math., 30 (1977), 373. Google Scholar

[3]

J. Thomas Beale, Thomas Y. Hou and John Lowengrub, Convergence of a boundary integral method for water waves,, SIAM J. Numer. Anal., 33 (1996), 1797. Google Scholar

[4]

J. Thomas Beale, Thomas Y. Hou and John S. Lowengrub, Growth rates for the linearized motion of fluid interfaces away from equilibrium,, Comm. Pure Appl. Math., 46 (1993), 1269. Google Scholar

[5]

J. Thomas Beale and Andrew Majda, Vortex methods. I, Convergence in three dimensions,, Math. Comp., 39 (1982), 1. Google Scholar

show all references

References:
[1]

J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the $3$-D Euler equations,, Comm. Math. Phys., 94 (1984), 61. Google Scholar

[2]

J. Thomas Beale, The existence of solitary water waves,, Comm. Pure Appl. Math., 30 (1977), 373. Google Scholar

[3]

J. Thomas Beale, Thomas Y. Hou and John Lowengrub, Convergence of a boundary integral method for water waves,, SIAM J. Numer. Anal., 33 (1996), 1797. Google Scholar

[4]

J. Thomas Beale, Thomas Y. Hou and John S. Lowengrub, Growth rates for the linearized motion of fluid interfaces away from equilibrium,, Comm. Pure Appl. Math., 46 (1993), 1269. Google Scholar

[5]

J. Thomas Beale and Andrew Majda, Vortex methods. I, Convergence in three dimensions,, Math. Comp., 39 (1982), 1. Google Scholar

[1]

Eduard Feireisl, Mirko Rokyta, Josef Málek. Preface. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : i-iii. doi: 10.3934/dcdss.2008.1.3i

[2]

Carlos Castillo-Chavez, Gerardo Chowell. Preface. Mathematical Biosciences & Engineering, 2011, 8 (1) : i-vi. doi: 10.3934/mbe.2011.8.1i

[3]

Christian Kanzow, Dong-Hui Li, Nobuo Yamashita. Preface. Numerical Algebra, Control & Optimization, 2011, 1 (1) : i-v. doi: 10.3934/naco.2011.1.1i

[4]

Zhaosheng Feng, Wei Feng. Preface. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : i-i. doi: 10.3934/dcdss.2014.7.6i

[5]

P. De Maesschalck, Freddy Dumortier, Martin Wechselberger. Preface. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : i-iii. doi: 10.3934/dcdss.2009.2.4i

[6]

Cheng-Chew Lim, Song Wang. Preface. Journal of Industrial & Management Optimization, 2008, 4 (1) : i-ii. doi: 10.3934/jimo.2008.4.1i

[7]

Thorsten Koch, Xiaoling Sun. Preface. Numerical Algebra, Control & Optimization, 2012, 2 (4) : i-ii. doi: 10.3934/naco.2012.2.4i

[8]

Urszula Ledzewicz, Marek Galewski, Andrzej Nowakowski, Andrzej Swierniak, Agnieszka Kalamajska, Ewa Schmeidel. Preface. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : i-ii. doi: 10.3934/dcdsb.2014.19.8i

[9]

Vadim Kaloshin, Sergey Lototsky, Michael Röckner. Preface. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : i-ii. doi: 10.3934/dcdsb.2006.6.4i

[10]

Eduard Feireisl, Josef Málek, Mirko Rokyta. Preface. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : i-ii. doi: 10.3934/dcdss.2010.3.3i

[11]

Chaudry Masood Khalique, Maria Luz Gandarais, Mufid Abudiab. Preface. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : i-ii. doi: 10.3934/dcdss.201804i

[12]

Zhouping Xin, Tong Yang. Preface. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : i-ii. doi: 10.3934/dcdss.201606i

[13]

Noureddine Alaa, Marc Dambrine, Antoine Henrot, Alain Miranville. Preface. Communications on Pure & Applied Analysis, 2012, 11 (6) : i-ii. doi: 10.3934/cpaa.2012.11.6i

[14]

Wei Kang, Liang Ke, Qi Wang. Preface. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : i-i. doi: 10.3934/dcdsb.2007.8.3i

[15]

Ricardo Carretero-González, Jesús Cuevas Maraver, Dimitri J. Frantzeskakis, P.G. Kevrekidis, Faustino Palmero Acebedo. Preface. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : i-iii. doi: 10.3934/dcdss.2011.4.5i

[16]

Shengji Li, Nan-Jing Huang, Xinmin Yang. Preface. Numerical Algebra, Control & Optimization, 2011, 1 (3) : i-ii. doi: 10.3934/naco.2011.1.3i

[17]

Avner Friedman, Mirosław Lachowicz, Urszula Ledzewicz, Monika Joanna Piotrowska, Zuzanna Szymanska. Preface. Mathematical Biosciences & Engineering, 2017, 14 (1) : i-i. doi: 10.3934/mbe.201701i

[18]

Baojun Bian, Shanjian Tang, Qi Zhang. Preface. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : i-iv. doi: 10.3934/dcds.2015.35.11i

[19]

Zhaosheng Feng, Jinzhi Lei. Preface. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : i-iv. doi: 10.3934/dcdsb.2011.16.2i

[20]

Gisèle Ruiz Goldstein, Jerome A. Goldstein, Alain Miranville. Preface. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : i-ii. doi: 10.3934/dcds.2008.22.4i

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

[Back to Top]