March  2012, 17(2): 527-552. doi: 10.3934/dcdsb.2012.17.527

On the energetic formulation of the Gurtin and Anand model in strain gradient plasticity

1. 

Dipartimento di Matematica, Facoltà di Ingegneria, Università degli Studi di Brescia, Via Valotti 9, 25133 Brescia, Italy

Received  July 2010 Revised  September 2011 Published  December 2011

We discuss the energetic formulation of the Gurtin and Anand model (J. Mech. Phys. Solids, 2005) in strain gradient plasticity, and illustrate the related mathematical analysis concerning the existence of quasi-static evolutions.
Citation: Alessandro Giacomini. On the energetic formulation of the Gurtin and Anand model in strain gradient plasticity. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 527-552. doi: 10.3934/dcdsb.2012.17.527
References:
[1]

E. C. Aifantis, On the microstructural origin of certain inelastic models,, Trans. ASME J. Eng. Mater. Technol., 106 (1984), 326. doi: 10.1115/1.3225725. Google Scholar

[2]

M. F. Ashby, The deformation of plastically non-homogeneous alloys,, Philos. Mag., 21 (1970), 399. doi: 10.1080/14786437008238426. Google Scholar

[3]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variations and Free Discontinuity Problems,", Oxford Mathematical Monographs, (2000). Google Scholar

[4]

G. Dal Maso, A. DeSimone and M. G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials,, Arch. Ration. Mech. Anal., 180 (2006), 237. doi: 10.1007/s00205-005-0407-0. Google Scholar

[5]

G. Dal Maso, A. DeSimone, M. G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening,, Arch. Ration. Mech. Anal., 189 (2008), 469. doi: 10.1007/s00205-008-0117-5. Google Scholar

[6]

G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity,, Arch. Ration. Mech. Anal., 176 (2005), 165. doi: 10.1007/s00205-004-0351-4. Google Scholar

[7]

I. Ekeland and R. Témam, "Convex Analysis and Variational Problems,", Translated from the French, 28 (1976). Google Scholar

[8]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1992). Google Scholar

[9]

N. A. Fleck and J. W. Hutchinson, Strain gradient plasticity,, Adv. Appl. Mech., 33 (1997), 295. doi: 10.1016/S0065-2156(08)70388-0. Google Scholar

[10]

N. A. Fleck and J. W. Hutchinson, A reformulation of strain gradient plasticity,, J. Mech. Phys. Solids, 49 (2001), 2245. doi: 10.1016/S0022-5096(01)00049-7. Google Scholar

[11]

G. A. Francfort and C. J. Larsen, Existence and convergence for quasistatic evolution in brittle fracture,, Comm. Pure Appl. Math., 56 (2003), 1465. doi: 10.1002/cpa.3039. Google Scholar

[12]

G. A. Francfort and J.-J. Marigo, Revisiting brittle fractures as an energy minimization problem,, J. Mech. Phys. Solids, 46 (1998), 1319. doi: 10.1016/S0022-5096(98)00034-9. Google Scholar

[13]

A. Garroni, G. Leoni and M. Ponsiglione, Gradient theory for plasticity via homogenization of discrete dislocations,, J. Eur. Math. Soc. (JEMS), 12 (2010), 1231. doi: 10.4171/JEMS/228. Google Scholar

[14]

A. Giacomini and L. Lussardi, Quasi-static evolution for a model in strain gradient plasticity,, SIAM J. Math. Anal., 40 (2008), 1201. doi: 10.1137/070708202. Google Scholar

[15]

C. Goffman and J. Serrin, Sublinear functions of measures and variational integrals,, Duke Math. J., 31 (1964), 159. doi: 10.1215/S0012-7094-64-03115-1. Google Scholar

[16]

P. Gudmundson, A unified treatment of strain gradient plasticity,, J. Mech. Phys. Solids, 52 (2004), 1379. doi: 10.1016/j.jmps.2003.11.002. Google Scholar

[17]

M. E. Gurtin and L. Anand, A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. I. Small deformations,, J. Mech. Phys. Solids, 53 (2005), 1624. doi: 10.1016/j.jmps.2004.12.008. Google Scholar

[18]

M. E. Gurtin and B. D. Reddy, Alternative formulations of isotropic hardening for Mises materials, and associated variational inequalities,, Contin. Mech. Thermodyn., 21 (2009), 237. doi: 10.1007/s00161-009-0107-3. Google Scholar

[19]

W. Han and B. D. Reddy, "Plasticity. Mathematical Theory and Numerical Analysis,", Interdisciplinary Applied Mathematics, 9 (1999). Google Scholar

[20]

J. Kratochvíl, M. Kružík and R. Sedláček, Energetic approach to gradient plasticity,, ZAMM Z. Angew. Math. Mech., 90 (2010), 122. doi: 10.1002/zamm.200900227. Google Scholar

[21]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems,, Calc. Var. Partial Differential Equations, 22 (2005), 73. Google Scholar

[22]

A. Mainik and A. Mielke, Global existence for rate-independent gradient plasticity at finite strain,, J. Nonlinear Sci., 19 (2009), 221. doi: 10.1007/s00332-008-9033-y. Google Scholar

[23]

A. Mielke, Evolution of rate-independent systems,, in, (2005), 461. Google Scholar

[24]

A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems,, Calc. Var. Partial Differential Equations, 31 (2008), 387. Google Scholar

[25]

A. Mielke and F. Theil, On rate-independent hysteresis models,, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151. Google Scholar

[26]

H.-B. Mühlhaus and E. C. Aifantis, A variational principle for gradient plasticity,, Int. J. Solids Structures, 28 (1991), 845. doi: 10.1016/0020-7683(91)90004-Y. Google Scholar

[27]

P. Neff, K. Chelmiński and H.-D. Alber, Notes on strain gradient plasticity: Finite strain covariant modelling and global existence in the infinitesimal rate-independent case,, Math. Models Methods Appl. Sci., 19 (2009), 307. Google Scholar

[28]

J. F. Nye, Some geometrical relations in dislocated crystals,, Acta Metall., 1 (1953), 153. doi: 10.1016/0001-6160(53)90054-6. Google Scholar

[29]

B. D. Reddy, F. Ebobisse and A. McBride, Well-posedness of a model of strain gradient plasticity for plastically irrotational materials,, Int. J. Plasticity, 24 (2008), 55. doi: 10.1016/j.ijplas.2007.01.013. Google Scholar

[30]

B. D. Reddy, F. Ebobisse and A. McBride, On the mathematical formulations of a model of strain gradient plasticity,, in, (2008), 117. Google Scholar

[31]

P.-M. Suquet, Sur les équations de la plasticité: Existence et régularité des solutions, (French) [On the equations of plasticity: Existence and regularity of solutions],, J. Mécanique, 20 (1981), 3. Google Scholar

show all references

References:
[1]

E. C. Aifantis, On the microstructural origin of certain inelastic models,, Trans. ASME J. Eng. Mater. Technol., 106 (1984), 326. doi: 10.1115/1.3225725. Google Scholar

[2]

M. F. Ashby, The deformation of plastically non-homogeneous alloys,, Philos. Mag., 21 (1970), 399. doi: 10.1080/14786437008238426. Google Scholar

[3]

L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variations and Free Discontinuity Problems,", Oxford Mathematical Monographs, (2000). Google Scholar

[4]

G. Dal Maso, A. DeSimone and M. G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials,, Arch. Ration. Mech. Anal., 180 (2006), 237. doi: 10.1007/s00205-005-0407-0. Google Scholar

[5]

G. Dal Maso, A. DeSimone, M. G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening,, Arch. Ration. Mech. Anal., 189 (2008), 469. doi: 10.1007/s00205-008-0117-5. Google Scholar

[6]

G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity,, Arch. Ration. Mech. Anal., 176 (2005), 165. doi: 10.1007/s00205-004-0351-4. Google Scholar

[7]

I. Ekeland and R. Témam, "Convex Analysis and Variational Problems,", Translated from the French, 28 (1976). Google Scholar

[8]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Mathematics, (1992). Google Scholar

[9]

N. A. Fleck and J. W. Hutchinson, Strain gradient plasticity,, Adv. Appl. Mech., 33 (1997), 295. doi: 10.1016/S0065-2156(08)70388-0. Google Scholar

[10]

N. A. Fleck and J. W. Hutchinson, A reformulation of strain gradient plasticity,, J. Mech. Phys. Solids, 49 (2001), 2245. doi: 10.1016/S0022-5096(01)00049-7. Google Scholar

[11]

G. A. Francfort and C. J. Larsen, Existence and convergence for quasistatic evolution in brittle fracture,, Comm. Pure Appl. Math., 56 (2003), 1465. doi: 10.1002/cpa.3039. Google Scholar

[12]

G. A. Francfort and J.-J. Marigo, Revisiting brittle fractures as an energy minimization problem,, J. Mech. Phys. Solids, 46 (1998), 1319. doi: 10.1016/S0022-5096(98)00034-9. Google Scholar

[13]

A. Garroni, G. Leoni and M. Ponsiglione, Gradient theory for plasticity via homogenization of discrete dislocations,, J. Eur. Math. Soc. (JEMS), 12 (2010), 1231. doi: 10.4171/JEMS/228. Google Scholar

[14]

A. Giacomini and L. Lussardi, Quasi-static evolution for a model in strain gradient plasticity,, SIAM J. Math. Anal., 40 (2008), 1201. doi: 10.1137/070708202. Google Scholar

[15]

C. Goffman and J. Serrin, Sublinear functions of measures and variational integrals,, Duke Math. J., 31 (1964), 159. doi: 10.1215/S0012-7094-64-03115-1. Google Scholar

[16]

P. Gudmundson, A unified treatment of strain gradient plasticity,, J. Mech. Phys. Solids, 52 (2004), 1379. doi: 10.1016/j.jmps.2003.11.002. Google Scholar

[17]

M. E. Gurtin and L. Anand, A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. I. Small deformations,, J. Mech. Phys. Solids, 53 (2005), 1624. doi: 10.1016/j.jmps.2004.12.008. Google Scholar

[18]

M. E. Gurtin and B. D. Reddy, Alternative formulations of isotropic hardening for Mises materials, and associated variational inequalities,, Contin. Mech. Thermodyn., 21 (2009), 237. doi: 10.1007/s00161-009-0107-3. Google Scholar

[19]

W. Han and B. D. Reddy, "Plasticity. Mathematical Theory and Numerical Analysis,", Interdisciplinary Applied Mathematics, 9 (1999). Google Scholar

[20]

J. Kratochvíl, M. Kružík and R. Sedláček, Energetic approach to gradient plasticity,, ZAMM Z. Angew. Math. Mech., 90 (2010), 122. doi: 10.1002/zamm.200900227. Google Scholar

[21]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems,, Calc. Var. Partial Differential Equations, 22 (2005), 73. Google Scholar

[22]

A. Mainik and A. Mielke, Global existence for rate-independent gradient plasticity at finite strain,, J. Nonlinear Sci., 19 (2009), 221. doi: 10.1007/s00332-008-9033-y. Google Scholar

[23]

A. Mielke, Evolution of rate-independent systems,, in, (2005), 461. Google Scholar

[24]

A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems,, Calc. Var. Partial Differential Equations, 31 (2008), 387. Google Scholar

[25]

A. Mielke and F. Theil, On rate-independent hysteresis models,, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151. Google Scholar

[26]

H.-B. Mühlhaus and E. C. Aifantis, A variational principle for gradient plasticity,, Int. J. Solids Structures, 28 (1991), 845. doi: 10.1016/0020-7683(91)90004-Y. Google Scholar

[27]

P. Neff, K. Chelmiński and H.-D. Alber, Notes on strain gradient plasticity: Finite strain covariant modelling and global existence in the infinitesimal rate-independent case,, Math. Models Methods Appl. Sci., 19 (2009), 307. Google Scholar

[28]

J. F. Nye, Some geometrical relations in dislocated crystals,, Acta Metall., 1 (1953), 153. doi: 10.1016/0001-6160(53)90054-6. Google Scholar

[29]

B. D. Reddy, F. Ebobisse and A. McBride, Well-posedness of a model of strain gradient plasticity for plastically irrotational materials,, Int. J. Plasticity, 24 (2008), 55. doi: 10.1016/j.ijplas.2007.01.013. Google Scholar

[30]

B. D. Reddy, F. Ebobisse and A. McBride, On the mathematical formulations of a model of strain gradient plasticity,, in, (2008), 117. Google Scholar

[31]

P.-M. Suquet, Sur les équations de la plasticité: Existence et régularité des solutions, (French) [On the equations of plasticity: Existence and regularity of solutions],, J. Mécanique, 20 (1981), 3. Google Scholar

[1]

Roman VodiČka, Vladislav MantiČ. An energy based formulation of a quasi-static interface damage model with a multilinear cohesive law. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1539-1561. doi: 10.3934/dcdss.2017079

[2]

Dorothee Knees, Andreas Schröder. Computational aspects of quasi-static crack propagation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 63-99. doi: 10.3934/dcdss.2013.6.63

[3]

Przemysław Górka. Quasi-static evolution of polyhedral crystals. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 309-320. doi: 10.3934/dcdsb.2008.9.309

[4]

Gilles A. Francfort, Alessandro Giacomini, Alessandro Musesti. On the Fleck and Willis homogenization procedure in strain gradient plasticity. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 43-62. doi: 10.3934/dcdss.2013.6.43

[5]

Irina F. Sivergina, Michael P. Polis. About global null controllability of a quasi-static thermoelastic contact system. Conference Publications, 2005, 2005 (Special) : 816-823. doi: 10.3934/proc.2005.2005.816

[6]

Christopher J. Larsen. Local minimality and crack prediction in quasi-static Griffith fracture evolution. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 121-129. doi: 10.3934/dcdss.2013.6.121

[7]

Alice Fiaschi. Young-measure quasi-static damage evolution: The nonconvex and the brittle cases. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 17-42. doi: 10.3934/dcdss.2013.6.17

[8]

Michiel Bertsch, Roberta Dal Passo, Lorenzo Giacomelli, Giuseppe Tomassetti. A nonlocal and fully nonlinear degenerate parabolic system from strain-gradient plasticity. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 15-43. doi: 10.3934/dcdsb.2011.15.15

[9]

Dorin Ieşan. Strain gradient theory of porous solids with initial stresses and initial heat flux. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2169-2187. doi: 10.3934/dcdsb.2014.19.2169

[10]

Qiang Du, Chun Liu, R. Ryham, X. Wang. Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation. Communications on Pure & Applied Analysis, 2005, 4 (3) : 537-548. doi: 10.3934/cpaa.2005.4.537

[11]

Nobuyuki Kenmochi. Parabolic quasi-variational diffusion problems with gradient constraints. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 423-438. doi: 10.3934/dcdss.2013.6.423

[12]

Tomáš Roubíček. Thermodynamics of perfect plasticity. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 193-214. doi: 10.3934/dcdss.2013.6.193

[13]

Gianni Dal Maso, Alexander Mielke, Ulisse Stefanelli. Preface: Rate-independent evolutions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : i-ii. doi: 10.3934/dcdss.2013.6.1i

[14]

Annalisa Malusa, Matteo Novaga. Crystalline evolutions in chessboard-like microstructures. Networks & Heterogeneous Media, 2018, 13 (3) : 493-513. doi: 10.3934/nhm.2018022

[15]

Gilles Carbou, Pierre Fabrie, Olivier Guès. On the Ferromagnetism equations in the non static case. Communications on Pure & Applied Analysis, 2004, 3 (3) : 367-393. doi: 10.3934/cpaa.2004.3.367

[16]

Gilles Carbou, Stéphane Labbé. Stability for static walls in ferromagnetic nanowires. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 273-290. doi: 10.3934/dcdsb.2006.6.273

[17]

Jason S. Howell, Irena Lasiecka, Justin T. Webster. Quasi-stability and exponential attractors for a non-gradient system---applications to piston-theoretic plates with internal damping. Evolution Equations & Control Theory, 2016, 5 (4) : 567-603. doi: 10.3934/eect.2016020

[18]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018149

[19]

Francesco Solombrino. Quasistatic evolution for plasticity with softening: The spatially homogeneous case. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1189-1217. doi: 10.3934/dcds.2010.27.1189

[20]

G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Globally stable quasistatic evolution in plasticity with softening. Networks & Heterogeneous Media, 2008, 3 (3) : 567-614. doi: 10.3934/nhm.2008.3.567

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]