\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Adhesive flexible material structures

Abstract Related Papers Cited by
  • We study variational problems modeling the adhesion interaction with a rigid substrate for elastic strings and rods. We produce conditions characterizing bonded and detached states as well as optimality properties with respect to loading and geometry. We show Euler equations for minimizers of the total energy outside self-contact and secondary contact points with the substrate.
    Mathematics Subject Classification: Primary: 49K10, 49Q10; 74G55 Secondary: 74B20; 74G65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Antman, "Nonlinear Problems of Elasticity," Second Edition, Applied Mathematical Sciences, 107, Springer, New York, 2005.

    [2]

    B. Aksak, M. P. Murphy and M. Sitti, Adhesion of biologically inspired vertical and angled polymer microfiber arrays, Langmuir, 23 (2007), 3322-3332.doi: 10.1021/la062697t.

    [3]

    K. T. Andrews, L. Chapman, J. R. Fernández, M. Fisackerly, M. Shillor, L. Vanerian and T. VanHouten, A membrane in adhesive contact, SIAM J. Appl. Math., 64 (2003), 152-169.doi: 10.1137/S0036139902406206.

    [4]

    G. Bellettini and L. Mugnai, Characterization and representation of the lower semicontinuous envelope of the elastica functional, Ann. Inst. Poincaré Anal. Non Lin., 21 (2004), 839-880.doi: 10.1016/j.anihpc.2004.01.001.

    [5]

    R. Burridge and J. B. Keller, Peeling, slipping and cracking--Some one dimensional free boundaries problems in mechanics, SIAM Review, 20 (1978), 31-61.doi: 10.1137/1020003.

    [6]

    R. Courant and H. Robbins, "What Is Mathematics? An Elementary Approach to Ideas and Methods," Oxford Univ. Press, New York, 1979.

    [7]

    G. dal Maso, A. DeSimone and F. Tomarelli, eds., "Variational Problems in Materials Science," Proceedings of the International Conference held in Trieste, September 6-10, 2004, Progress in Nonlinear Differential Equations and their Applications, 68, Birkhäuser Verlag, Basel, 2006.

    [8]

    A. A. Evans and E. Lauga, Adhesion transition of flexible sheets, Physical Review Letters, 79 (2009), 066116.

    [9]

    M. Frémond, Contact with adhesion, in "Topics in Nonsmooth Mechanics," Birkhäuser, Basel, (1988), 157-185.

    [10]

    A. Ghatak, L. Mahadevan, J. Y. Chung, M. K. Chaudhury and V. Shenoy, Peeling from a biomimetically patterned thin elastic film, Proc. Royal Soc. London A, 460 (2004), 2725-2735.doi: 10.1098/rspa.2004.1313.

    [11]

    O. Gonzalez, J. H. Maddocks, F. Schuricht and H. von der Mosel, Global curvature and self-contact of nonlinearly elastic curves and rods, Calc. Var. Partial Differential Equations, 14 (2002), 29-68.

    [12]

    W. Han, K. L. Kuttler, M. Shillor and M. Sofonea, Elastic beam in adhesive contact, Int. J. Solids Structures, 39 (2002), 1145-1164.doi: 10.1016/S0020-7683(01)00250-5.

    [13]

    N. Israelachvili, "Intramolecular and Surface Forces," Academic Press, New York, 1992.

    [14]

    K. L. Johnson, Adhesion and friction between a smooth elastic spherical asperity and a smooth surface, Proc. Royal Soc. London A, 453 (1997), 163-179.doi: 10.1098/rspa.1997.0010.

    [15]

    K. Kendall, "Molecular Adhesion and its Applications," Kluwer Academic/Plenum, New York, 2001.

    [16]

    J. Lee, C. Majidi, B. Schubert and R. Fearing, Sliding-induced adhesion of stiff polymer microfiber arrays. I. Macroscale behavior, J. R. Soc. Interface, 5 (2008), 835-844.doi: 10.1098/rsif.2007.1308.

    [17]

    F. Maddalena and D. Percivale, Variational models for peeling problems, Int. Free Boundaries, 10 (2008), 503-516.doi: 10.4171/IFB/199.

    [18]

    F. Maddalena, D. Percivale, G. Puglisi and L. Truskinowsky, Mechanics of reversible unzipping, Continuum Mech. Thermodyn., 21 (2009), 251-268.doi: 10.1007/s00161-009-0108-2.

    [19]

    F. Maddalena, D. Percivale and G. Puglisi, Energy minimizing states in adhesion problems for elastic rods, Appl. Mathematical Sciences, 4 (2010), 3749-3760.

    [20]

    F. Maddalena, D. Percivale and F. TomarelliScaling deduction of curvature elastic energies, to appear.

    [21]

    F. Maddalena, D. Percivale and F. Tomarelli, Elastic structures in adhesion interaction, to appear in Proc. "Variational Analysis and Aerospace Engineering II, Erice 2010" (eds. A. Frediani and G.Buttazzo), Springer, 2011.

    [22]

    C. Majidi, On formulating an adhesion problem using Euler's elastica, Mechanics Research Communications, 34 (2007), 85-90.doi: 10.1016/j.mechrescom.2006.06.007.

    [23]

    C. Majidi, Shear adhesion between an elastica and a rigid flat surface, Mechanics Research Communications, 36 (2009), 369-372.doi: 10.1016/j.mechrescom.2008.10.010.

    [24]

    X. Oyharcabal and T. Frisch, Peeling off an elastica from a smooth atractive substrate, Physical Review E, 71 (2005), 036611-6.doi: 10.1103/PhysRevE.71.036611.

    [25]

    D. Percivale and F. Tomarelli, Scaled Korn-Poincaré inequality in BD and a model of elastic plastic cantilever, Asymptotic Analysis, 23 (2000), 291-311.

    [26]

    D. Percivale and F. Tomarelli, From special bounded deformation to special bounded Hessian: The elastic-plastic beam, Math. Models Methods Appl. Sci., 15 (2005), 1009-1058.doi: 10.1142/S0218202505000650.

    [27]

    D. Percivale and F. Tomarelli, A variational principle for plastic hinges in a beam, Math. Models Methods Appl. Sci., 19 (2009), 2263-2297.doi: 10.1142/S021820250900411X.

    [28]

    P. Podio-Guidugli, Peeling tapes, in "Mechanics of Material Forces" (eds. P. Steinmann and G. Maugin), Adv. Mech. Math., 11, Springer, New York, (2005), 253-260.doi: 10.1007/0-387-26261-X_25.

    [29]

    M. C. Strus, L. Zalamea, A. Raman, R. B. Pipes, C. V. Nguyen and E. A. Stach, Peeling force spectroscopy: Exposing the adhesive nanomechanics of one-dimensional nanostructures, NANO LETTERS, 8 (2008), 544-550.doi: 10.1021/nl0728118.

    [30]

    M. Shillor, M. Sofonea and J. J. Telega, "Models and Analysis of Quasistatic Contact," Lecture Notes in Physics, 655, Springer, Berlin, 2004.

    [31]

    M. Sofonea, W. Han and M. Shillor, "Analysis and Approximations of Contact Problems with Adhesion or Damage," Pure and Applied Mathematics (Boca Raton), 276, Chapman & Hall/CRC, Boca Raton, Florida, 2006.

    [32]

    Y.-P. Zhao, L. S. Wang and T. X. Yu, Mechanics of adhesion in MEMS-a review, J. Adhesion Sci.Technol., 17 (2003), 519-546.doi: 10.1163/15685610360554393.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(140) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return