Citation: |
[1] |
G. Capriz, Continua with latent microstructure, Arch. Rational Mech. Anal., 90 (1985), 43-56.doi: 10.1007/BF00281586. |
[2] |
G. Capriz and G. Mazzini, Interactions between subbodies for complex materials, Proceedings of the Third Meeting on Current Ideas in Mechanics and Related Fields (Segovia, 1995), Extracta Math., 11 (1996), 17-21. |
[3] |
G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fracture: Existence and approximation results, Arch. Rational Mech. Anal., 162 (2002), 101-135.doi: 10.1007/s002050100187. |
[4] |
E. De Giorgi, New problems on minimizing movements, in "Boundary Value Problems for Partial Differential Equations and Applications'' (eds. C. Baiocchi and J. L. Lions), RMA Res. Notes Appl. Math., 29, Masson, (1993), 81-98. |
[5] |
J. E. Dunn and J. Serrin, On the thermomechanics of intertistitial working, Arch. Rational Mech. Anal., 88 (1985), 95-133.doi: 10.1007/BF00250907. |
[6] |
J. D. Eshelby, The elastic energy-momentum tensor, J. Elasticity, 5 (1975), 321-335.doi: 10.1007/BF00126994. |
[7] |
G. A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimizing problem, J. Mech. Phys. Solids, 46 (1998), 1319-1342.doi: 10.1016/S0022-5096(98)00034-9. |
[8] |
G. A. Francfort and A. Mielke, Existence results for a class of rate-independent material models with non-convex elastic energies, J. Reine Angew. Math., 595 (2006), 55-91.doi: 10.1515/CRELLE.2006.044. |
[9] |
M. Giaquinta and S. Hildebrandt, "Calculus of Variations,'' vol. I, The Lagrangian formalism, vol. II, The Hamiltonian formalism, Springer-Verlag, Berlin, 1996. |
[10] |
M. Giaquinta, P. M. Mariano and G. Modica, A variational problem in the mechanics of complex materials, Discr. Cont. Dyn. Systems, 28 (2010), 519-537.doi: 10.3934/dcds.2010.28.519. |
[11] |
M. Giaquinta, P. M. Mariano, G. Modica and D. Mucci, Ground states of simple bodies that may undergo brittle fracture, Physica D, 239 (2010), 1485-1502.doi: 10.1016/j.physd.2010.04.006. |
[12] |
M. Giaquinta, G. Modica and J. Souček, "Cartesian Currents in the Calculus of Variations,'' Vol. I and II, Springer-Verlag, Berlin, 1998. |
[13] |
S. Kouranbaeva and S. Shkoller, A variational approach to second-order multisymplectic field theory, J. Geom. Phys., 35 (2000), 333-366.doi: 10.1016/S0393-0440(00)00012-7. |
[14] |
P. M. Mariano, Walk of a line defect in quasicrystals, Meccanica, 40 (2005), 511-525.doi: 10.1007/s11012-005-2137-7. |
[15] |
P. M. Mariano, Mechanics of quasi-periodic alloys, J. Nonlinear Sci., 16 (2006), 45-77.doi: 10.1007/s00332-005-0654-5. |
[16] |
P. M. Mariano, Geometry and balance of hyperstresses, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rendiconti Lincei (9) Mat. Appl., 18 (2007), 311-331. |
[17] |
P. M. Mariano, Physical significance of the curvature varifold-based description of crack nucleation, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 21 (2010), 215-233. |
[18] |
P. M. Mariano, Crystal plasticity: The Hamilton-Eshelby stress in terms of the metric in the intermediate configuration, Theor. Appl. Mech., in print, 2011. |
[19] |
J. E. Marsden and T. R. J. Hughes, "Mathematical Foundations of Elasticity,'' Corrected reprint of the 1983 original, Dover Publications, Inc., New York, 1994. |
[20] |
N. K. Simha and K. Bhattacharya, Kinetics of phase boundaries with edges and junctions in a tree-dimensional multi-phase body, J. Mech. Phys. Solids, 48 (2000), 2619-2641.doi: 10.1016/S0022-5096(00)00008-9. |
[21] |
R. A. Toupin, Theories of elasticity with couple-stress, Arch. Rational Mech. Anal., 17 (1964), 85-112. |