\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Acceleration waves in complex materials

Abstract / Introduction Related Papers Cited by
  • A framework for modeling acceleration waves propagation in complex materials is presented. Coupled propagation of elasto-acoustic, microstructural and thermal waves is investigated in the full three dimensional case. The presence of microstructure inside each material element is taken into account without introducing additional hypotheses on the physical nature of the microstructure itself, thus obtaining a general theory that is suitable for the whole class of complex bodies. In particular, jump conditions across the discontinuity interface that identifies the acceleration wave are obtained and the amplitude evolution equation is derived.
    Mathematics Subject Classification: Primary: 74J40; Secondary: 74F05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Altenbach, V. A. Eremeyev, L. P. Lebedev and L. A. Rendón, Acceleration waves and ellipticity in thermoelastic micropolar media, Archive of Applied Mechanics, 80 (2010), 217-227.doi: 10.1007/s00419-009-0314-1.

    [2]

    R. C. Batra, Thermodynamics of non-simple elastic materials, J. Elasticity, 6 (1976), 451-456.doi: 10.1007/BF00040904.

    [3]

    G. Capriz, "Continua with Microstructure," Springer Tracts in Natural Philosophy, 35, Springer-Verlag, New York, 1989.

    [4]

    G. Capriz and E. G. Virga, On singular surfaces in the dynamics of continua with microstructure, Quart. Appl. Math., 52 (1994), 509-517.

    [5]

    G. Capriz and P. M. Mariano, Symmetries and Hamiltonian formalism for complex materials, J. Elasticity, 72 (2003), 57-70.doi: 10.1023/B:ELAS.0000018775.44668.07.

    [6]

    P. J. Chen, Growth and decay of waves in solids, in "Handbuch der Physics" (eds. S. Flügge and C. Truesdell), Vol. VI, Springer, Berlin, (1973), 303-402.

    [7]

    P. J. Chen, M. F. McCarthy and T. R. O'Leary, One-dimensional shock and acceleration waves in deformable dielectric materials with memory, Arch. Ration. Mech. Anal., 62 (1976), 189-207.doi: 10.1007/BF00248471.

    [8]

    M. Ciarletta, G. Iovane and M. A. Sumbatyan, On stress analysis for crack in elastic materials with voids, Internat. J. Engrg. Sci., 41 (2003), 2447-2461.doi: 10.1016/S0020-7225(03)00236-2.

    [9]

    M. Ciarletta and B. Straughan, Poroacoustic acceleration waves, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 3493-3499.doi: 10.1098/rspa.2006.1730.

    [10]

    M. Ciarletta and B. Straughan, Thermo-poroacoustic acceleration waves in elastic materials with voids, J. Math. Anal. Appl., 333 (2007), 142-150.doi: 10.1016/j.jmaa.2006.09.014.

    [11]

    M. Ciarletta and B. Straughan, Poroacoustic acceleration waves with second sound, J. Sound Vibration, 306 (2007), 725-731.doi: 10.1016/j.jsv.2007.06.015.

    [12]

    M. Ciarletta, B. Straughan and V. Zampoli, Thermo-poroacoustic acceleration waves in elastic materials with voids without energy dissipation, Internat. J. Engrg. Sci., 45 (2007), 736-743.doi: 10.1016/j.ijengsci.2007.05.001.

    [13]

    F. Davi and P. M. Mariano, Evolution of domain walls in ferroelectric solids, J. Mech. Phys. Solids, 49 (2001), 1701-1726.doi: 10.1016/S0022-5096(01)00014-X.

    [14]

    A. C. Diebold, Subsurface imaging with scanning ultrasound holography, Science, 310 (2005), 61-62.doi: 10.1126/science.1119259.

    [15]

    S. Dost, Acceleration waves in elastic dielectrics with polarization gradient effects, Internat. J. Engrg. Sci., 21 (1983), 1305-1311.doi: 10.1016/0020-7225(83)90127-1.

    [16]

    J. L. Ericksen, Liquid crystals with variable degree of orientation, Arch. Ration. Mech. Anal., 113 (1991), 97-120.doi: 10.1007/BF00380413.

    [17]

    C. de Fabritiis and P. M. Mariano, Geometry of interactions in complex bodies, J. Geom. Phys., 54 (2005), 301-323.doi: 10.1016/j.geomphys.2004.10.002.

    [18]

    M. Fabrizio, F. Franchi and B. Straughan, On a model for thermo-poroacoustic waves, Internat. J. Engrg. Sci., 46 (2008), 790-798.doi: 10.1016/j.ijengsci.2008.01.016.

    [19]

    L. Fiorino and P. Giovine, Nano-pores in thermoelastic materials, Proceedings of XVII$^o$ AIMETA, Technical note 385, Firenze, 2005.

    [20]

    L. Fiorino and P. Giovine, Some remarks on acceleration waves in porous solids, in "WASCOM 2007''—14th Conference on Waves and Stability in Continuous Media (eds. N. Manganaro and S. Rionero), World Scientific Publishing, Hackensack, NJ, (2008), 280-286.

    [21]

    M. Garai and F. Pompoli, A simple empirical model of polyester fibre materials for acoustical applications, Applied Acoustics, 66 (2005), 1383-1398.

    [22]

    A. E. Green and N. Laws, On the entropy production inequality, Arch. Ration. Mech. Anal., 45 (1972), 47-53.doi: 10.1007/BF00253395.

    [23]

    A. E. Green and P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 432 (1991), 171-194.doi: 10.1098/rspa.1991.0012.

    [24]

    P. M. Jordan, Growth and decay of acoustic acceleration waves in Darcy-type porous media, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 2749-2766.doi: 10.1098/rspa.2005.1477.

    [25]

    R. A. Lemons and C. F. Quate, Acoustic microscope--scanning version, Applied Physics Letters, 24 (1974), 163-165.doi: 10.1063/1.1655136.

    [26]

    T. Manacorda, "Introduzione alla Termomeccanica dei Continui," Pitagora, Bologna, 1979.

    [27]

    P. M. Mariano, Multifield theories in mechanics of solids, Adv. in Appl. Mech., 38 (2002), 1-93.doi: 10.1016/S0065-2156(02)80102-8.

    [28]

    P. M. Mariano and L. Sabatini, Homothermal acceleration waves in multifield theories of continua, Internat. J. Non-Linear Mech., 35 (2000), 963-977.doi: 10.1016/S0020-7462(99)00071-2.

    [29]

    P. M. Mariano and F. L. Stazi, Computational aspects of the mechanics of complex materials, Arch. Comput. Methods Eng., 12 (2005), 391-478.doi: 10.1007/BF02736191.

    [30]

    P. M. Mariano, Mechanics of complex bodies: Commentary on the unified modeling of material substructures, Theor. Appl. Mech., 35 (2008), 235-254.doi: 10.2298/TAM0803235M.

    [31]

    P. M. Mariano, Cracks in complex bodies: Covariance of tip balances, J. Nonlinear Sci., 18 (2008), 99-141.doi: 10.1007/s00332-007-9008-4.

    [32]

    W. Maysenhölder, A. Berg and P. Leistner, "Acoustic Properties of Aluminium Foams-Measurements and Modelling," Proceedings of CFA/DAGA, Strasbourg, 2005.

    [33]

    R. J. MeyerUltrasonic drying of saturated porous solids via second sound, 2006. Available from: http://www.freepatentsonline.com/6376145.html.

    [34]

    K. Mitra, S. Kumar, A. Vedavarz and M. K. Moallemi, Experimental evidence of hyperbolic heat conduction in processed meat, Journal of Heat Transfer, Transactions of the ASME, 117 (1995), 568-573.doi: 10.1115/1.2822615.

    [35]

    M. Ostoja-Starzewski and J. Trebicki, Stochastic dynamics of acceleration waves in random media, Mechanics of Materials, 38 (2006), 840-848.doi: 10.1016/j.mechmat.2005.06.022.

    [36]

    G. F. Raiser, J. L. Wise, R. J. Clifton, D. E. Grady and D. E. Cox, Plate impact response of ceramics and glasses, Journal of Applied Physics, 75 (1994), 3862-3869.doi: 10.1063/1.356066.

    [37]

    L. Sabatini and G. Augusti, Acceleration Waves in Thermoelastic Beams, Meccanica, 35 (2000), 519-546.doi: 10.1023/A:1010592409020.

    [38]

    J. J. Vadasz, S. Govender and P. Vadasz, Heat transfer enhancement in nano-fluids suspensions: Possible mechanisms and explanations, International Journal of Heat Mass Transfer, 48 (2005), 2673-2683.doi: 10.1016/j.ijheatmasstransfer.2005.01.023.

    [39]

    D. K. Wilson, Simple, relaxational models for the acoustical properties of porous media, Applied Acoustics, 50 (1997), 171-188.doi: 10.1016/S0003-682X(96)00048-5.

    [40]

    T. W. Wright, Acceleration waves in simple elastic materials, Arch. Ration. Mech. Anal., 50 (1973), 237-277.doi: 10.1007/BF00281508.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(59) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return