\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The co-divergence of vector valued currents

Abstract / Introduction Related Papers Cited by
  • In the context of stress theory of the mechanics of continuous media, a generalization of the boundary operator for de Rham currents---the co-divergence operator---is introduced. While the boundary operator of de Rham's theory applies to real valued currents, the co-divergence operator acts on vector valued currents, i.e., functionals dual to differential forms valued in a vector bundle. From the point of view of continuum mechanics, the framework presented here allows for the formulation of the principal notions of continuum mechanics on a manifold that does not have a Riemannian metric or a connection while at the same time allowing irregular bodies and velocity fields.
    Mathematics Subject Classification: 58A25, 74A10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. de Rham, "Differentiable Manifolds. Forms, Currents, Harmonic Forms,'' Translated from the French by F. R. Smith, With an introduction by S. S. Chern, Grundlehren der Mathematischen Wissenschaften, 266, Springer-Verlag, Berlin, 1984.

    [2]

    H. Federer, "Geometric Measure Theory,'' Springer-Verlag, 1969.

    [3]

    V. M. Gol'dshteĭn, V. I. Kuz'minow and I. A. Shvedov, Differential forms on Lipschitz manifold, Sibirskii Matematicheskii Zhurnal, 23 (1982), 16-30, 215.

    [4]

    M. Giaquinta, G. Modica and J. Souček, "Cartesian Currents in the Calculus of Variations. I. Cartesian Currents,'' Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, A Series of Modern Surveys in Mathematics, 37, Springer-Verlag, Berlin, 1998.

    [5]

    R. S. Palais, "Foundations of Global Non-Linear Analysis,'' W. A. Benjamin, Inc., New York-Amsterdam, 1968.

    [6]

    R. S. Palais, "The Geometrization of Physics,'' Lecture notes from a course at National Tsing Hua University, Hsinchu, Taiwan, 1981.

    [7]

    G. Rodnay and R. Segev, Cauchy's flux theorem in light of geometric integration theory, Journal of Elasticity, 71 (2003), 183-203.doi: 10.1023/B:ELAS.0000005545.46932.08.

    [8]

    R. Segev, Metric-independent analysis of the stress-energy tensor, Journal of Mathematical Physics, 43 (2002), 3220-3231.doi: 10.1063/1.1475347.

    [9]

    H. Whitney, "Geometric Integration Theory,'' Princeton University Press, 1957.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(150) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return