Citation: |
[1] |
G. de Rham, "Differentiable Manifolds. Forms, Currents, Harmonic Forms,'' Translated from the French by F. R. Smith, With an introduction by S. S. Chern, Grundlehren der Mathematischen Wissenschaften, 266, Springer-Verlag, Berlin, 1984. |
[2] |
H. Federer, "Geometric Measure Theory,'' Springer-Verlag, 1969. |
[3] |
V. M. Gol'dshteĭn, V. I. Kuz'minow and I. A. Shvedov, Differential forms on Lipschitz manifold, Sibirskii Matematicheskii Zhurnal, 23 (1982), 16-30, 215. |
[4] |
M. Giaquinta, G. Modica and J. Souček, "Cartesian Currents in the Calculus of Variations. I. Cartesian Currents,'' Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, A Series of Modern Surveys in Mathematics, 37, Springer-Verlag, Berlin, 1998. |
[5] |
R. S. Palais, "Foundations of Global Non-Linear Analysis,'' W. A. Benjamin, Inc., New York-Amsterdam, 1968. |
[6] |
R. S. Palais, "The Geometrization of Physics,'' Lecture notes from a course at National Tsing Hua University, Hsinchu, Taiwan, 1981. |
[7] |
G. Rodnay and R. Segev, Cauchy's flux theorem in light of geometric integration theory, Journal of Elasticity, 71 (2003), 183-203.doi: 10.1023/B:ELAS.0000005545.46932.08. |
[8] |
R. Segev, Metric-independent analysis of the stress-energy tensor, Journal of Mathematical Physics, 43 (2002), 3220-3231.doi: 10.1063/1.1475347. |
[9] |
H. Whitney, "Geometric Integration Theory,'' Princeton University Press, 1957. |