• Previous Article
    Fragmentation and monomer lengthening of rod-like polymers, a relevant model for prion proliferation
  • DCDS-B Home
  • This Issue
  • Next Article
    Two theorems on singularly perturbed semigroups with applications to models of applied mathematics
May  2012, 17(3): 759-774. doi: 10.3934/dcdsb.2012.17.759

Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials

1. 

CNRS & Univ. Montpellier 2, Mathématiques, CC 051, 34095 Montpellier, France

2. 

Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago, 851 South Morgan Street, Chicago, Illinois 60607, United States

Received  March 2011 Revised  November 2011 Published  January 2012

We consider semiclassically scaled Schrödinger equations with an external potential and a highly oscillatory periodic potential. We construct asymptotic solutions in the form of semiclassical wave packets. These solutions are concentrated (both, in space and in frequency) around the effective semiclassical phase-space flow, and involve a slowly varying envelope whose dynamics is governed by a homogenized Schrödinger equation with time-dependent effective mass tensor. The corresponding adiabatic decoupling of the slow and fast degrees of freedom is shown to be valid up to Ehrenfest time scales.
Citation: Rémi Carles, Christof Sparber. Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 759-774. doi: 10.3934/dcdsb.2012.17.759
References:
[1]

G. Allaire and M. Palombaro, Localization for the Schrödinger equation in a locally periodic medium,, SIAM J. Math. Anal., 38 (2006), 127. doi: 10.1137/050635572. Google Scholar

[2]

G. Allaire and A. Piatnitski, Homogenization of the Schrödinger equation and effective mass theorems,, Comm. Math. Phys., 258 (2005), 1. doi: 10.1007/s00220-005-1329-2. Google Scholar

[3]

A. Bensoussan, J.-L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,", Studies in Mathematics and its Applications, 5 (1978). Google Scholar

[4]

J. M. Bily and D. Robert, The semi-classical Van Vleck formula. Application to the Aharonov-Bohm effect,, in, 1 (2001), 89. Google Scholar

[5]

A. Bouzouina and D. Robert, Uniform semiclassical estimates for the propagation of quantum observables,, Duke Math. J., 111 (2002), 223. doi: 10.1215/S0012-7094-02-11122-3. Google Scholar

[6]

R. Carles and C. Fermanian-Kammerer, Nonlinear coherent states and Ehrenfest time for Schrödinger equation,, Comm. Math. Phys., 301 (2011), 443. doi: 10.1007/s00220-010-1154-0. Google Scholar

[7]

R. Carles, P. A. Markowich and C. Sparber, Semiclassical asymptotics for weakly nonlinear Bloch waves,, J. Statist. Phys., 117 (2004), 343. doi: 10.1023/B:JOSS.0000044070.34410.17. Google Scholar

[8]

M. Combescure and D. Robert, Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow,, Asymptot. Anal., 14 (1997), 377. Google Scholar

[9]

_____, Quadratic quantum Hamiltonians revisited,, Cubo, 8 (2006), 61. Google Scholar

[10]

S. De Bièvre and D. Robert, Semiclassical propagation on |logħ| time scales,, Int. Math. Res. Not., (2003), 667. doi: 10.1155/S1073792803204268. Google Scholar

[11]

M. Dimassi, J.-C. Guillot and J. Ralston, Gaussian beam construction for adiabatic perturbations,, Math. Phys. Anal. Geom., 9 (2006), 187. doi: 10.1007/s11040-006-9009-9. Google Scholar

[12]

E. Faou, V. Gradinaru and C. Lubich, Computing semiclassical quantum dynamics with Hagedorn wavepackets,, SIAM J. Sci. Comput., 31 (2009), 3027. doi: 10.1137/080729724. Google Scholar

[13]

P. Gérard, Mesures semi-classiques et ondes de Bloch,, in, (1991), 1990. Google Scholar

[14]

P. Gérard, P. A. Markowich, N. J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms,, Comm. Pure Appl. Math., 50 (1997), 323. doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C. Google Scholar

[15]

J.-C. Guillot, J. Ralston and E. Trubowitz, Semiclassical asymptotics in solid state physics,, Comm. Math. Phys., 116 (1988), 401. doi: 10.1007/BF01229201. Google Scholar

[16]

G. A. Hagedorn, Semiclassical quantum mechanics. I. The ħ $\rightarrow 0$ limit for coherent states,, Comm. Math. Phys., 71 (1980), 77. doi: 10.1007/BF01230088. Google Scholar

[17]

G. A. Hagedorn and A. Joye, Exponentially accurate semiclassical dynamics: Propagation, localization, Ehrenfest times, scattering, and more general states,, Ann. Henri Poincaré, 1 (2000), 837. doi: 10.1007/PL00001017. Google Scholar

[18]

_____, A time-dependent Born-Oppenheimer approximation with exponentially small error estimates,, Comm. Math. Phys., 223 (2001), 583. doi: 10.1007/s002200100562. Google Scholar

[19]

E. J. Heller, Frozen Gaussians: A very simple semiclassical approximation,, J. Chem. Phys., 75 (1981), 2923. doi: 10.1063/1.442382. Google Scholar

[20]

M. A. Hoefer and M. I. Weinstein, Defect modes and homogenization of periodic Schrödinger operators,, SIAM J. Math. Anal., 43 (2011), 971. doi: 10.1137/100807302. Google Scholar

[21]

L. Hörmander, Symplectic classification of quadratic forms, and general Mehler formulas,, Math. Z., 219 (1995), 413. doi: 10.1007/BF02572374. Google Scholar

[22]

F. Hövermann, H. Spohn and S. Teufel, Semiclassical limit for the Schrödinger equation with a short scale periodic potential,, Comm. Math. Phys., 215 (2001), 609. doi: 10.1007/s002200000314. Google Scholar

[23]

B. Ilan and M. I. Weinstein, Band-edge solitons, nonlinear Schrödinger/Gross-Pitaevskii equations, and effective media,, Multiscale Model. Simul., 8 (2010), 1055. doi: 10.1137/090769417. Google Scholar

[24]

H. Kitada, On a construction of the fundamental solution for Schrödinger equations,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27 (1980), 193. Google Scholar

[25]

H. Kitada and H. Kumano-go, A family of Fourier integral operators and the fundamental solution for a Schrödinger equation,, Osaka J. Math., 18 (1981), 291. Google Scholar

[26]

R. G. Littlejohn, The semiclassical evolution of wave packets,, Phys. Rep., 138 (1986), 193. doi: 10.1016/0370-1573(86)90103-1. Google Scholar

[27]

J. Lu, W. E and X. Yang, Asymptotic analysis of the quantum dynamics: Bloch-Wigner transform and Bloch dynamics,, to appear in Acta Math. Appl. Sin. Engl. Ser., (2011). Google Scholar

[28]

G. Panati, H. Spohn and S. Teufel, Effective dynamics for Bloch electrons: Peierls substitution and beyond,, Comm. Math. Phys., 242 (2003), 547. doi: 10.1007/s00220-003-0950-1. Google Scholar

[29]

T. Paul, Semi-classical methods with emphasis on coherent states,, in, 95 (1997), 51. Google Scholar

[30]

_____, Échelles de temps pour l'évolution quantique à petite constante de Planck,, in, (2009), 2007. Google Scholar

[31]

J. V. Ralston, On the construction of quasimodes associated with stable periodic orbits,, Comm. Math. Phys., 51 (1976), 219. doi: 10.1007/BF01617921. Google Scholar

[32]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics. IV. Analysis of Operators,", Academic Press [Harcourt Brace Jovanovich, (1978). Google Scholar

[33]

D. Robert, Long time propagation results in quantum mechanics,, in, 307 (2002), 255. Google Scholar

[34]

_____, Revivals of wave packets and Bohr-Sommerfeld quantization rules,, in, 447 (2007), 219. Google Scholar

[35]

_____, On the Herman-Kluk semiclassical approximation,, Rev. Math. Phys., 22 (2010), 1123. doi: 10.1142/S0129055X1000417X. Google Scholar

[36]

V. Rousse, Semiclassical simple initial value representations,, to appear in Ark. för Mat., (). Google Scholar

[37]

C. Sparber, Effective mass theorems for nonlinear Schrödinger equations,, SIAM J. Appl. Math., 66 (2006), 820. doi: 10.1137/050623759. Google Scholar

[38]

H. Spohn, Long time asymptotics for quantum particles in a periodic potential,, Phys. Rev. Lett., 77 (1996), 1198. doi: 10.1103/PhysRevLett.77.1198. Google Scholar

[39]

T. Swart and V. Rousse, A mathematical justification for the Herman-Kluk propagator,, Comm. Math. Phys., 286 (2009), 725. doi: 10.1007/s00220-008-0681-4. Google Scholar

[40]

S. Teufel, "Adiabatic Perturbation Theory in Quantum Dynamics,", Lecture Notes in Mathematics, 1821 (2003). Google Scholar

[41]

C. H. Wilcox, Theory of Bloch waves,, J. Analyse Math., 33 (1978), 146. doi: 10.1007/BF02790171. Google Scholar

show all references

References:
[1]

G. Allaire and M. Palombaro, Localization for the Schrödinger equation in a locally periodic medium,, SIAM J. Math. Anal., 38 (2006), 127. doi: 10.1137/050635572. Google Scholar

[2]

G. Allaire and A. Piatnitski, Homogenization of the Schrödinger equation and effective mass theorems,, Comm. Math. Phys., 258 (2005), 1. doi: 10.1007/s00220-005-1329-2. Google Scholar

[3]

A. Bensoussan, J.-L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,", Studies in Mathematics and its Applications, 5 (1978). Google Scholar

[4]

J. M. Bily and D. Robert, The semi-classical Van Vleck formula. Application to the Aharonov-Bohm effect,, in, 1 (2001), 89. Google Scholar

[5]

A. Bouzouina and D. Robert, Uniform semiclassical estimates for the propagation of quantum observables,, Duke Math. J., 111 (2002), 223. doi: 10.1215/S0012-7094-02-11122-3. Google Scholar

[6]

R. Carles and C. Fermanian-Kammerer, Nonlinear coherent states and Ehrenfest time for Schrödinger equation,, Comm. Math. Phys., 301 (2011), 443. doi: 10.1007/s00220-010-1154-0. Google Scholar

[7]

R. Carles, P. A. Markowich and C. Sparber, Semiclassical asymptotics for weakly nonlinear Bloch waves,, J. Statist. Phys., 117 (2004), 343. doi: 10.1023/B:JOSS.0000044070.34410.17. Google Scholar

[8]

M. Combescure and D. Robert, Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow,, Asymptot. Anal., 14 (1997), 377. Google Scholar

[9]

_____, Quadratic quantum Hamiltonians revisited,, Cubo, 8 (2006), 61. Google Scholar

[10]

S. De Bièvre and D. Robert, Semiclassical propagation on |logħ| time scales,, Int. Math. Res. Not., (2003), 667. doi: 10.1155/S1073792803204268. Google Scholar

[11]

M. Dimassi, J.-C. Guillot and J. Ralston, Gaussian beam construction for adiabatic perturbations,, Math. Phys. Anal. Geom., 9 (2006), 187. doi: 10.1007/s11040-006-9009-9. Google Scholar

[12]

E. Faou, V. Gradinaru and C. Lubich, Computing semiclassical quantum dynamics with Hagedorn wavepackets,, SIAM J. Sci. Comput., 31 (2009), 3027. doi: 10.1137/080729724. Google Scholar

[13]

P. Gérard, Mesures semi-classiques et ondes de Bloch,, in, (1991), 1990. Google Scholar

[14]

P. Gérard, P. A. Markowich, N. J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms,, Comm. Pure Appl. Math., 50 (1997), 323. doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C. Google Scholar

[15]

J.-C. Guillot, J. Ralston and E. Trubowitz, Semiclassical asymptotics in solid state physics,, Comm. Math. Phys., 116 (1988), 401. doi: 10.1007/BF01229201. Google Scholar

[16]

G. A. Hagedorn, Semiclassical quantum mechanics. I. The ħ $\rightarrow 0$ limit for coherent states,, Comm. Math. Phys., 71 (1980), 77. doi: 10.1007/BF01230088. Google Scholar

[17]

G. A. Hagedorn and A. Joye, Exponentially accurate semiclassical dynamics: Propagation, localization, Ehrenfest times, scattering, and more general states,, Ann. Henri Poincaré, 1 (2000), 837. doi: 10.1007/PL00001017. Google Scholar

[18]

_____, A time-dependent Born-Oppenheimer approximation with exponentially small error estimates,, Comm. Math. Phys., 223 (2001), 583. doi: 10.1007/s002200100562. Google Scholar

[19]

E. J. Heller, Frozen Gaussians: A very simple semiclassical approximation,, J. Chem. Phys., 75 (1981), 2923. doi: 10.1063/1.442382. Google Scholar

[20]

M. A. Hoefer and M. I. Weinstein, Defect modes and homogenization of periodic Schrödinger operators,, SIAM J. Math. Anal., 43 (2011), 971. doi: 10.1137/100807302. Google Scholar

[21]

L. Hörmander, Symplectic classification of quadratic forms, and general Mehler formulas,, Math. Z., 219 (1995), 413. doi: 10.1007/BF02572374. Google Scholar

[22]

F. Hövermann, H. Spohn and S. Teufel, Semiclassical limit for the Schrödinger equation with a short scale periodic potential,, Comm. Math. Phys., 215 (2001), 609. doi: 10.1007/s002200000314. Google Scholar

[23]

B. Ilan and M. I. Weinstein, Band-edge solitons, nonlinear Schrödinger/Gross-Pitaevskii equations, and effective media,, Multiscale Model. Simul., 8 (2010), 1055. doi: 10.1137/090769417. Google Scholar

[24]

H. Kitada, On a construction of the fundamental solution for Schrödinger equations,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27 (1980), 193. Google Scholar

[25]

H. Kitada and H. Kumano-go, A family of Fourier integral operators and the fundamental solution for a Schrödinger equation,, Osaka J. Math., 18 (1981), 291. Google Scholar

[26]

R. G. Littlejohn, The semiclassical evolution of wave packets,, Phys. Rep., 138 (1986), 193. doi: 10.1016/0370-1573(86)90103-1. Google Scholar

[27]

J. Lu, W. E and X. Yang, Asymptotic analysis of the quantum dynamics: Bloch-Wigner transform and Bloch dynamics,, to appear in Acta Math. Appl. Sin. Engl. Ser., (2011). Google Scholar

[28]

G. Panati, H. Spohn and S. Teufel, Effective dynamics for Bloch electrons: Peierls substitution and beyond,, Comm. Math. Phys., 242 (2003), 547. doi: 10.1007/s00220-003-0950-1. Google Scholar

[29]

T. Paul, Semi-classical methods with emphasis on coherent states,, in, 95 (1997), 51. Google Scholar

[30]

_____, Échelles de temps pour l'évolution quantique à petite constante de Planck,, in, (2009), 2007. Google Scholar

[31]

J. V. Ralston, On the construction of quasimodes associated with stable periodic orbits,, Comm. Math. Phys., 51 (1976), 219. doi: 10.1007/BF01617921. Google Scholar

[32]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics. IV. Analysis of Operators,", Academic Press [Harcourt Brace Jovanovich, (1978). Google Scholar

[33]

D. Robert, Long time propagation results in quantum mechanics,, in, 307 (2002), 255. Google Scholar

[34]

_____, Revivals of wave packets and Bohr-Sommerfeld quantization rules,, in, 447 (2007), 219. Google Scholar

[35]

_____, On the Herman-Kluk semiclassical approximation,, Rev. Math. Phys., 22 (2010), 1123. doi: 10.1142/S0129055X1000417X. Google Scholar

[36]

V. Rousse, Semiclassical simple initial value representations,, to appear in Ark. för Mat., (). Google Scholar

[37]

C. Sparber, Effective mass theorems for nonlinear Schrödinger equations,, SIAM J. Appl. Math., 66 (2006), 820. doi: 10.1137/050623759. Google Scholar

[38]

H. Spohn, Long time asymptotics for quantum particles in a periodic potential,, Phys. Rev. Lett., 77 (1996), 1198. doi: 10.1103/PhysRevLett.77.1198. Google Scholar

[39]

T. Swart and V. Rousse, A mathematical justification for the Herman-Kluk propagator,, Comm. Math. Phys., 286 (2009), 725. doi: 10.1007/s00220-008-0681-4. Google Scholar

[40]

S. Teufel, "Adiabatic Perturbation Theory in Quantum Dynamics,", Lecture Notes in Mathematics, 1821 (2003). Google Scholar

[41]

C. H. Wilcox, Theory of Bloch waves,, J. Analyse Math., 33 (1978), 146. doi: 10.1007/BF02790171. Google Scholar

[1]

Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1

[2]

Lihui Chai, Shi Jin, Qin Li. Semi-classical models for the Schrödinger equation with periodic potentials and band crossings. Kinetic & Related Models, 2013, 6 (3) : 505-532. doi: 10.3934/krm.2013.6.505

[3]

Harald Friedrich. Semiclassical and large quantum number limits of the Schrödinger equation. Conference Publications, 2003, 2003 (Special) : 288-294. doi: 10.3934/proc.2003.2003.288

[4]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[5]

P. D'Ancona. On large potential perturbations of the Schrödinger, wave and Klein–Gordon equations. Communications on Pure & Applied Analysis, 2020, 19 (1) : 609-640. doi: 10.3934/cpaa.2020029

[6]

Silvia Cingolani, Mónica Clapp. Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1263-1281. doi: 10.3934/cpaa.2010.9.1263

[7]

Minbo Yang, Yanheng Ding. Existence and multiplicity of semiclassical states for a quasilinear Schrödinger equation in $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 429-449. doi: 10.3934/cpaa.2013.12.429

[8]

Robert Magnus, Olivier Moschetta. The non-linear Schrödinger equation with non-periodic potential: infinite-bump solutions and non-degeneracy. Communications on Pure & Applied Analysis, 2012, 11 (2) : 587-626. doi: 10.3934/cpaa.2012.11.587

[9]

Hans Zwart, Yann Le Gorrec, Bernhard Maschke. Relating systems properties of the wave and the Schrödinger equation. Evolution Equations & Control Theory, 2015, 4 (2) : 233-240. doi: 10.3934/eect.2015.4.233

[10]

Alexander Arbieto, Carlos Matheus. On the periodic Schrödinger-Debye equation. Communications on Pure & Applied Analysis, 2008, 7 (3) : 699-713. doi: 10.3934/cpaa.2008.7.699

[11]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[12]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[13]

Naoufel Ben Abdallah, Yongyong Cai, Francois Castella, Florian Méhats. Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinetic & Related Models, 2011, 4 (4) : 831-856. doi: 10.3934/krm.2011.4.831

[14]

Silvia Cingolani, Mnica Clapp, Simone Secchi. Intertwining semiclassical solutions to a Schrödinger-Newton system. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 891-908. doi: 10.3934/dcdss.2013.6.891

[15]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[16]

Kazumasa Fujiwara, Tohru Ozawa. On the lifespan of strong solutions to the periodic derivative nonlinear Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 275-280. doi: 10.3934/eect.2018013

[17]

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93

[18]

Olivier Goubet, Ezzeddine Zahrouni. On a time discretization of a weakly damped forced nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1429-1442. doi: 10.3934/cpaa.2008.7.1429

[19]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

[20]

Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]