May  2012, 17(3): 775-799. doi: 10.3934/dcdsb.2012.17.775

Fragmentation and monomer lengthening of rod-like polymers, a relevant model for prion proliferation

1. 

Université de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille Jordan, 43, blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France, France, France

2. 

Université de Lyon, CNRS UMR 5208, INSA-Lyon, Institut Camille Jordan, 21, avenue Jean Capelle, F-69621 Villeurbanne cedex, France

Received  June 2011 Revised  October 2011 Published  January 2012

The Greer, Pujo-Menjouet and Webb model [Greer et al., J. Theoret. Biol., 242 (2006), 598--606] for prion dynamics was found to be in good agreement with experimental observations under no-flow conditions. The objective of this work is to generalize the problem to the framework of general polymerization-fragmentation under flow motion, motivated by the fact that laboratory work often involves prion dynamics under flow conditions in order to observe faster processes. Moreover, understanding and modelling the microstructure influence of macroscopically monitored non-Newtonian behaviour is crucial for sensor design, with the goal to provide practical information about ongoing molecular evolution. This paper's results can then be considered as one step in the mathematical understanding of such models, namely the proof of positivity and existence of solutions in suitable functional spaces. To that purpose, we introduce a new model based on the rigid-rod polymer theory to account for the polymer dynamics under flow conditions. As expected, when applied to the prion problem, in the absence of motion it reduces to that in Greer et al. (2006). At the heart of any polymer kinetical theory there is a configurational probability diffusion partial differential equation (PDE) of Fokker-Planck-Smoluchowski type. The main mathematical result of this paper is the proof of existence of positive solutions to the aforementioned PDE for a class of flows of practical interest, taking into account the flow induced splitting/lengthening of polymers in general, and prions in particular.
Citation: Ionel Sorin Ciuperca, Erwan Hingant, Liviu Iulian Palade, Laurent Pujo-Menjouet. Fragmentation and monomer lengthening of rod-like polymers, a relevant model for prion proliferation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 775-799. doi: 10.3934/dcdsb.2012.17.775
References:
[1]

R. B. Bird, C. F. Curtiss, R. C. Armstrong and O. Hassager, "Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory,", J. Wiley & Sons, (1987).   Google Scholar

[2]

V. Calvez, N. Lenuzza, D. Oelz, J. P. Deslys, P. Laurent, F. Mouthon and B. Perthame, Size distribution dependence of prion aggregates infectivity,, Mathematical Biosciences, 217 (2009), 88.  doi: 10.1016/j.mbs.2008.10.007.  Google Scholar

[3]

B. Caughey, G. S. Baron, B. Chesebro and M. Jeffrey, Getting a grip on prions: Oligomers, amyloids, and pathological membrane interactions,, Annu. Rev. Biochem., 78 (2009), 177.  doi: 10.1146/annurev.biochem.78.082907.145410.  Google Scholar

[4]

M. Doumic, T. Goudon and T. Lepoutre, Scaling limit of a discrete prion dynamics model,, Comm. in Math. Sci., 7 (2009), 839.   Google Scholar

[5]

H. Engler, J. Prüss and G. F. Webb, Analysis of a model for the dynamics of prions II,, J. Math. Anal. Appl., 324 (2006), 98.  doi: 10.1016/j.jmaa.2005.11.021.  Google Scholar

[6]

M. L. Greer, L. Pujo-Menjouet and G. F. Webb, A mathematical analysis of the dynamics of prion proliferation,, J. Theoret. Biol., 242 (2006), 598.  doi: 10.1016/j.jtbi.2006.04.010.  Google Scholar

[7]

M. L. Greer, P. van den Driessche, L. Wang and G. F. Webb, Effects of general incidence and polymer joining on nucleated polymerization in a model of prion proliferation,, SIAM J. Appl. Math., 68 (2007), 154.  doi: 10.1137/06066076X.  Google Scholar

[8]

R. R. Huilgol and N. Phan-Thien, "Fluid Mechanics of Viscoelasticity,", Elsevier, (1997).   Google Scholar

[9]

J. G. Kirkwood, "Macromolecules,", ed. P. L. Auer, (1968).   Google Scholar

[10]

P. T. Lansbury and B. Caughey, The chemistry of scrapie infection: Implications of the 'ice 9' metaphor,, Chemistry & Biology, 2 (1995), 1.  doi: 10.1016/1074-5521(95)90074-8.  Google Scholar

[11]

P. Laurençot and C. Walker, Well-posedness for a model of prion proliferation dynamics,, J. Evol. Equ., 7 (2007), 241.  doi: 10.1007/s00028-006-0279-2.  Google Scholar

[12]

J. Masel, V. A. Jansen and M. A. Nowak, Quantifying the kinetic parameters of prion replication,, Biophys. Chem., 77 (1999), 139.  doi: 10.1016/S0301-4622(99)00016-2.  Google Scholar

[13]

F. Otto and A. E. Tzavaras, Continuity of velocity gradients in suspensions of rod-like molecules,, Commun. Math. Phys., 277 (2008), 729.  doi: 10.1007/s00220-007-0373-5.  Google Scholar

[14]

S. B. Prusiner, Prions,, Proc. Natl. Acad. Sci. USA, 95 (1998), 13363.  doi: 10.1073/pnas.95.23.13363.  Google Scholar

[15]

J. Prüss, L. Pujo-Menjouet, G. F. Webb and R. Zacher, Analysis of a model for the dynamics of prions,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 225.   Google Scholar

[16]

T. Scheibel, A. S. Kowal, J. D. Bloom and S. L. Lindquist, Bidirectional amyloid fiber growth for a yeast prion determinant,, Curr. Biol., 11 (2001), 366.  doi: 10.1016/S0960-9822(01)00099-9.  Google Scholar

[17]

G. Simonett and C. Walker, On the solvability of a mathematical model for prion proliferation,, J. Math. Anal. Appl., 324 (2006), 580.  doi: 10.1016/j.jmaa.2005.12.036.  Google Scholar

[18]

C. Walker, Prion proliferation with unbounded polymerization rates,, in, 15 (2007), 387.   Google Scholar

[19]

V. Zamoza-Signoret, J.-D. Arnaud, P. Fontes, M.-T. Alvarez-Martinez and J.-P. Liautard, Physiological role of the cellular prion protein,, Vet. Res, 39 (2008).   Google Scholar

show all references

References:
[1]

R. B. Bird, C. F. Curtiss, R. C. Armstrong and O. Hassager, "Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory,", J. Wiley & Sons, (1987).   Google Scholar

[2]

V. Calvez, N. Lenuzza, D. Oelz, J. P. Deslys, P. Laurent, F. Mouthon and B. Perthame, Size distribution dependence of prion aggregates infectivity,, Mathematical Biosciences, 217 (2009), 88.  doi: 10.1016/j.mbs.2008.10.007.  Google Scholar

[3]

B. Caughey, G. S. Baron, B. Chesebro and M. Jeffrey, Getting a grip on prions: Oligomers, amyloids, and pathological membrane interactions,, Annu. Rev. Biochem., 78 (2009), 177.  doi: 10.1146/annurev.biochem.78.082907.145410.  Google Scholar

[4]

M. Doumic, T. Goudon and T. Lepoutre, Scaling limit of a discrete prion dynamics model,, Comm. in Math. Sci., 7 (2009), 839.   Google Scholar

[5]

H. Engler, J. Prüss and G. F. Webb, Analysis of a model for the dynamics of prions II,, J. Math. Anal. Appl., 324 (2006), 98.  doi: 10.1016/j.jmaa.2005.11.021.  Google Scholar

[6]

M. L. Greer, L. Pujo-Menjouet and G. F. Webb, A mathematical analysis of the dynamics of prion proliferation,, J. Theoret. Biol., 242 (2006), 598.  doi: 10.1016/j.jtbi.2006.04.010.  Google Scholar

[7]

M. L. Greer, P. van den Driessche, L. Wang and G. F. Webb, Effects of general incidence and polymer joining on nucleated polymerization in a model of prion proliferation,, SIAM J. Appl. Math., 68 (2007), 154.  doi: 10.1137/06066076X.  Google Scholar

[8]

R. R. Huilgol and N. Phan-Thien, "Fluid Mechanics of Viscoelasticity,", Elsevier, (1997).   Google Scholar

[9]

J. G. Kirkwood, "Macromolecules,", ed. P. L. Auer, (1968).   Google Scholar

[10]

P. T. Lansbury and B. Caughey, The chemistry of scrapie infection: Implications of the 'ice 9' metaphor,, Chemistry & Biology, 2 (1995), 1.  doi: 10.1016/1074-5521(95)90074-8.  Google Scholar

[11]

P. Laurençot and C. Walker, Well-posedness for a model of prion proliferation dynamics,, J. Evol. Equ., 7 (2007), 241.  doi: 10.1007/s00028-006-0279-2.  Google Scholar

[12]

J. Masel, V. A. Jansen and M. A. Nowak, Quantifying the kinetic parameters of prion replication,, Biophys. Chem., 77 (1999), 139.  doi: 10.1016/S0301-4622(99)00016-2.  Google Scholar

[13]

F. Otto and A. E. Tzavaras, Continuity of velocity gradients in suspensions of rod-like molecules,, Commun. Math. Phys., 277 (2008), 729.  doi: 10.1007/s00220-007-0373-5.  Google Scholar

[14]

S. B. Prusiner, Prions,, Proc. Natl. Acad. Sci. USA, 95 (1998), 13363.  doi: 10.1073/pnas.95.23.13363.  Google Scholar

[15]

J. Prüss, L. Pujo-Menjouet, G. F. Webb and R. Zacher, Analysis of a model for the dynamics of prions,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 225.   Google Scholar

[16]

T. Scheibel, A. S. Kowal, J. D. Bloom and S. L. Lindquist, Bidirectional amyloid fiber growth for a yeast prion determinant,, Curr. Biol., 11 (2001), 366.  doi: 10.1016/S0960-9822(01)00099-9.  Google Scholar

[17]

G. Simonett and C. Walker, On the solvability of a mathematical model for prion proliferation,, J. Math. Anal. Appl., 324 (2006), 580.  doi: 10.1016/j.jmaa.2005.12.036.  Google Scholar

[18]

C. Walker, Prion proliferation with unbounded polymerization rates,, in, 15 (2007), 387.   Google Scholar

[19]

V. Zamoza-Signoret, J.-D. Arnaud, P. Fontes, M.-T. Alvarez-Martinez and J.-P. Liautard, Physiological role of the cellular prion protein,, Vet. Res, 39 (2008).   Google Scholar

[1]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic & Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[2]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[3]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[4]

Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124

[5]

Bingkang Huang, Lan Zhang. A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinetic & Related Models, 2019, 12 (2) : 357-396. doi: 10.3934/krm.2019016

[6]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[7]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[8]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[9]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[10]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic & Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[11]

Guanghua Ji, M. Gregory Forest, Qi Wang. Structure formation in sheared polymer-rod nanocomposites. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 341-379. doi: 10.3934/dcdss.2015.8.341

[12]

Xing Huang, Michael Röckner, Feng-Yu Wang. Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3017-3035. doi: 10.3934/dcds.2019125

[13]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[14]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

[15]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[16]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[17]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[18]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[19]

Prasanta Kumar Barik. Existence of mass-conserving weak solutions to the singular coagulation equation with multiple fragmentation. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020012

[20]

Vladimir I. Bogachev, Stanislav V. Shaposhnikov, Alexander Yu. Veretennikov. Differentiability of solutions of stationary Fokker--Planck--Kolmogorov equations with respect to a parameter. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3519-3543. doi: 10.3934/dcds.2016.36.3519

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (1)

[Back to Top]