Citation: |
[1] |
R. B. Bird, C. F. Curtiss, R. C. Armstrong and O. Hassager, "Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory," J. Wiley & Sons, New York, 1987. |
[2] |
V. Calvez, N. Lenuzza, D. Oelz, J. P. Deslys, P. Laurent, F. Mouthon and B. Perthame, Size distribution dependence of prion aggregates infectivity, Mathematical Biosciences, 217 (2009), 88-99.doi: 10.1016/j.mbs.2008.10.007. |
[3] |
B. Caughey, G. S. Baron, B. Chesebro and M. Jeffrey, Getting a grip on prions: Oligomers, amyloids, and pathological membrane interactions, Annu. Rev. Biochem., 78 (2009), 177-204.doi: 10.1146/annurev.biochem.78.082907.145410. |
[4] |
M. Doumic, T. Goudon and T. Lepoutre, Scaling limit of a discrete prion dynamics model, Comm. in Math. Sci., 7 (2009), 839-865. |
[5] |
H. Engler, J. Prüss and G. F. Webb, Analysis of a model for the dynamics of prions II, J. Math. Anal. Appl., 324 (2006), 98-117.doi: 10.1016/j.jmaa.2005.11.021. |
[6] |
M. L. Greer, L. Pujo-Menjouet and G. F. Webb, A mathematical analysis of the dynamics of prion proliferation, J. Theoret. Biol., 242 (2006), 598-606.doi: 10.1016/j.jtbi.2006.04.010. |
[7] |
M. L. Greer, P. van den Driessche, L. Wang and G. F. Webb, Effects of general incidence and polymer joining on nucleated polymerization in a model of prion proliferation, SIAM J. Appl. Math., 68 (2007), 154-170.doi: 10.1137/06066076X. |
[8] |
R. R. Huilgol and N. Phan-Thien, "Fluid Mechanics of Viscoelasticity," Elsevier, Amsterdam, 1997. |
[9] |
J. G. Kirkwood, "Macromolecules," ed. P. L. Auer, Gordon and Breach, 1968. |
[10] |
P. T. Lansbury and B. Caughey, The chemistry of scrapie infection: Implications of the 'ice 9' metaphor, Chemistry & Biology, 2 (1995), 1-5.doi: 10.1016/1074-5521(95)90074-8. |
[11] |
P. Laurençot and C. Walker, Well-posedness for a model of prion proliferation dynamics, J. Evol. Equ., 7 (2007), 241-264.doi: 10.1007/s00028-006-0279-2. |
[12] |
J. Masel, V. A. Jansen and M. A. Nowak, Quantifying the kinetic parameters of prion replication, Biophys. Chem., 77 (1999), 139-152.doi: 10.1016/S0301-4622(99)00016-2. |
[13] |
F. Otto and A. E. Tzavaras, Continuity of velocity gradients in suspensions of rod-like molecules, Commun. Math. Phys., 277 (2008), 729-758.doi: 10.1007/s00220-007-0373-5. |
[14] |
S. B. Prusiner, Prions, Proc. Natl. Acad. Sci. USA, 95 (1998), 13363-13383.doi: 10.1073/pnas.95.23.13363. |
[15] |
J. Prüss, L. Pujo-Menjouet, G. F. Webb and R. Zacher, Analysis of a model for the dynamics of prions, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 225-235. |
[16] |
T. Scheibel, A. S. Kowal, J. D. Bloom and S. L. Lindquist, Bidirectional amyloid fiber growth for a yeast prion determinant, Curr. Biol., 11 (2001), 366-369.doi: 10.1016/S0960-9822(01)00099-9. |
[17] |
G. Simonett and C. Walker, On the solvability of a mathematical model for prion proliferation, J. Math. Anal. Appl., 324 (2006), 580-603.doi: 10.1016/j.jmaa.2005.12.036. |
[18] |
C. Walker, Prion proliferation with unbounded polymerization rates, in "Proceedings of the Sixth Mississippi State-UBA Conference on Differential Equations and Computational Simulations," Electron. J. Diff. Eqns. Conference, 15, Southwest Texas State Univ., San Marcos, TX, (2007), 387-397. |
[19] |
V. Zamoza-Signoret, J.-D. Arnaud, P. Fontes, M.-T. Alvarez-Martinez and J.-P. Liautard, Physiological role of the cellular prion protein, Vet. Res, 39 (2008). |