January  2012, 17(1): 79-99. doi: 10.3934/dcdsb.2012.17.79

On computing heteroclinic trajectories of non-autonomous maps

1. 

Department of Mathematics, Bielefeld University, POB 100131, 33501 Bielefeld, Germany

2. 

Department of Mathematics, Jilin University, Changchun 130012, China

Received  January 2011 Revised  June 2011 Published  October 2011

We propose an adequate notion of a heteroclinic trajectory in non-autonomous systems that generalizes the notion of a heteroclinic orbit of an autonomous system. A heteroclinic trajectory connects two families of semi-bounded trajectories that are bounded in backward and forward time. We apply boundary value techniques for computing one representative of each family. These approximations allow the construction of projection boundary conditions that enable the calculation of a heteroclinic trajectory with high accuracy. The resulting algorithm is applied to non-autonomous toy models as well as to an example from mathematical biology.
Citation: Thorsten Hüls, Yongkui Zou. On computing heteroclinic trajectories of non-autonomous maps. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 79-99. doi: 10.3934/dcdsb.2012.17.79
References:
[1]

A. I. Alonso, J. Hong and R. Obaya, Exponential dichotomy and trichotomy for difference equations,, Comput. Math. Appl., 38 (1999), 41.  doi: 10.1016/S0898-1221(99)00167-4.  Google Scholar

[2]

W.-J. Beyn, The numerical computation of connecting orbits in dynamical systems,, IMA J. Numer. Anal., 10 (1990), 379.  doi: 10.1093/imanum/10.3.379.  Google Scholar

[3]

W.-J. Beyn and T. Hüls, Error estimates for approximating non-hyperbolic heteroclinic orbits of maps,, Numer. Math., 99 (2004), 289.  doi: 10.1007/s00211-004-0563-4.  Google Scholar

[4]

W.-J. Beyn, T. Hüls, J.-M. Kleinkauf and Y. Zou, Numerical analysis of degenerate connecting orbits for maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 3385.  doi: 10.1142/S0218127404011405.  Google Scholar

[5]

W.-J. Beyn and J.-M. Kleinkauf, The numerical computation of homoclinic orbits for maps,, SIAM J. Numer. Anal., 34 (1997), 1207.  doi: 10.1137/S0036142995281693.  Google Scholar

[6]

R. L. Devaney, "An Introduction to Chaotic Dynamical Systems," Second edition,, Addison-Wesley Studies in Nonlinearity, (1989).   Google Scholar

[7]

A. Dhooge, W. Govaerts and Y. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs,, ACM Trans. Math. Software, 29 (2003), 141.  doi: 10.1145/779359.779362.  Google Scholar

[8]

L. Dieci, C. Elia and E. Van Vleck, Exponential dichotomy on the real line: SVD and QR methods,, J. Differential Equations, 248 (2010), 287.   Google Scholar

[9]

S. Elaydi and R. J. Sacker, Global stability of periodic orbits of non-autonomous difference equations and population biology,, J. Differential Equations, 208 (2005), 258.   Google Scholar

[10]

S. Elaydi and R. J. Sacker, Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures,, J. Difference Equ. Appl., 11 (2005), 337.   Google Scholar

[11]

J. P. England, B. Krauskopf and H. M. Osinga, Bifurcations of stable sets in noninvertible planar maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 891.  doi: 10.1142/S0218127405012466.  Google Scholar

[12]

D. Fundinger, Toward the calculation of higher-dimensional stable manifolds and stable sets for noninvertible and piecewise-smooth maps,, J. Nonlinear Sci., 18 (2008), 391.  doi: 10.1007/s00332-007-9016-4.  Google Scholar

[13]

R. K. Ghaziani, W. Govaerts, Y. A. Kuznetsov and H. G. E. Meijer, Numerical continuation of connecting orbits of maps in MATLAB,, J. Difference Equ. Appl., 15 (2009), 849.   Google Scholar

[14]

J. K. Hale and H. Koçak, "Dynamics and Bifurcations," Texts in Applied Mathematics, 3,, Springer-Verlag, (1991).   Google Scholar

[15]

M. Hénon, A two-dimensional mapping with a strange attractor,, Comm. Math. Phys., 50 (1976), 69.  doi: 10.1007/BF01608556.  Google Scholar

[16]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Mathematics, (1977).   Google Scholar

[17]

T. Hüls, Numerical computation of dichotomy rates and projectors in discrete time,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 109.  doi: 10.3934/dcdsb.2009.12.109.  Google Scholar

[18]

T. Hüls, Computing Sacker-Sell spectra in discrete time dynamical systems,, SIAM J. Numer. Anal., 48 (2010), 2043.  doi: 10.1137/090754509.  Google Scholar

[19]

T. Hüls, Homoclinic trajectories of non-autonomous maps,, J. Difference Equ. Appl., 17 (2011), 9.   Google Scholar

[20]

Y. Kang and H. Smith, Global dynamics of a discrete two-species Lottery-Ricker competition model,, To appear in Journal of Biological Dynamics, (2011).   Google Scholar

[21]

B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson, J. Guckenheimer, A. Vladimirsky, M. Dellnitz and O. Junge, A survey of methods for computing (un)stable manifolds of vector fields,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 763.   Google Scholar

[22]

C. Mira, "Chaotic Dynamics. From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism,", World Scientific Publishing Co., (1987).   Google Scholar

[23]

K. J. Palmer, Exponential dichotomies, the shadowing lemma and transversal homoclinic points,, in, 1 (1988), 265.   Google Scholar

[24]

G. Papaschinopoulos, Exponential dichotomy for almost periodic linear difference equations,, Ann. Soc. Sci. Bruxelles Sér. I, 102 (1988), 19.   Google Scholar

[25]

C. Pötzsche and S. Siegmund, $C^m$ -smoothness of invariant fiber bundles,, Topol. Methods Nonlinear Anal., 24 (2004), 107.   Google Scholar

[26]

S. Smale, Differentiable dynamical systems,, Bull. Amer. Math. Soc., 73 (1967), 747.   Google Scholar

[27]

S. Wiggins, "Normally Hyperbolic Invariant Manifolds in Dynamical Systems," With the assistance of György Haller and Igor Mezić, Applied Mathematical Sciences, 105,, Springer-Verlag, (1994).   Google Scholar

show all references

References:
[1]

A. I. Alonso, J. Hong and R. Obaya, Exponential dichotomy and trichotomy for difference equations,, Comput. Math. Appl., 38 (1999), 41.  doi: 10.1016/S0898-1221(99)00167-4.  Google Scholar

[2]

W.-J. Beyn, The numerical computation of connecting orbits in dynamical systems,, IMA J. Numer. Anal., 10 (1990), 379.  doi: 10.1093/imanum/10.3.379.  Google Scholar

[3]

W.-J. Beyn and T. Hüls, Error estimates for approximating non-hyperbolic heteroclinic orbits of maps,, Numer. Math., 99 (2004), 289.  doi: 10.1007/s00211-004-0563-4.  Google Scholar

[4]

W.-J. Beyn, T. Hüls, J.-M. Kleinkauf and Y. Zou, Numerical analysis of degenerate connecting orbits for maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 3385.  doi: 10.1142/S0218127404011405.  Google Scholar

[5]

W.-J. Beyn and J.-M. Kleinkauf, The numerical computation of homoclinic orbits for maps,, SIAM J. Numer. Anal., 34 (1997), 1207.  doi: 10.1137/S0036142995281693.  Google Scholar

[6]

R. L. Devaney, "An Introduction to Chaotic Dynamical Systems," Second edition,, Addison-Wesley Studies in Nonlinearity, (1989).   Google Scholar

[7]

A. Dhooge, W. Govaerts and Y. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs,, ACM Trans. Math. Software, 29 (2003), 141.  doi: 10.1145/779359.779362.  Google Scholar

[8]

L. Dieci, C. Elia and E. Van Vleck, Exponential dichotomy on the real line: SVD and QR methods,, J. Differential Equations, 248 (2010), 287.   Google Scholar

[9]

S. Elaydi and R. J. Sacker, Global stability of periodic orbits of non-autonomous difference equations and population biology,, J. Differential Equations, 208 (2005), 258.   Google Scholar

[10]

S. Elaydi and R. J. Sacker, Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures,, J. Difference Equ. Appl., 11 (2005), 337.   Google Scholar

[11]

J. P. England, B. Krauskopf and H. M. Osinga, Bifurcations of stable sets in noninvertible planar maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 891.  doi: 10.1142/S0218127405012466.  Google Scholar

[12]

D. Fundinger, Toward the calculation of higher-dimensional stable manifolds and stable sets for noninvertible and piecewise-smooth maps,, J. Nonlinear Sci., 18 (2008), 391.  doi: 10.1007/s00332-007-9016-4.  Google Scholar

[13]

R. K. Ghaziani, W. Govaerts, Y. A. Kuznetsov and H. G. E. Meijer, Numerical continuation of connecting orbits of maps in MATLAB,, J. Difference Equ. Appl., 15 (2009), 849.   Google Scholar

[14]

J. K. Hale and H. Koçak, "Dynamics and Bifurcations," Texts in Applied Mathematics, 3,, Springer-Verlag, (1991).   Google Scholar

[15]

M. Hénon, A two-dimensional mapping with a strange attractor,, Comm. Math. Phys., 50 (1976), 69.  doi: 10.1007/BF01608556.  Google Scholar

[16]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,", Lecture Notes in Mathematics, (1977).   Google Scholar

[17]

T. Hüls, Numerical computation of dichotomy rates and projectors in discrete time,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 109.  doi: 10.3934/dcdsb.2009.12.109.  Google Scholar

[18]

T. Hüls, Computing Sacker-Sell spectra in discrete time dynamical systems,, SIAM J. Numer. Anal., 48 (2010), 2043.  doi: 10.1137/090754509.  Google Scholar

[19]

T. Hüls, Homoclinic trajectories of non-autonomous maps,, J. Difference Equ. Appl., 17 (2011), 9.   Google Scholar

[20]

Y. Kang and H. Smith, Global dynamics of a discrete two-species Lottery-Ricker competition model,, To appear in Journal of Biological Dynamics, (2011).   Google Scholar

[21]

B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson, J. Guckenheimer, A. Vladimirsky, M. Dellnitz and O. Junge, A survey of methods for computing (un)stable manifolds of vector fields,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 763.   Google Scholar

[22]

C. Mira, "Chaotic Dynamics. From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism,", World Scientific Publishing Co., (1987).   Google Scholar

[23]

K. J. Palmer, Exponential dichotomies, the shadowing lemma and transversal homoclinic points,, in, 1 (1988), 265.   Google Scholar

[24]

G. Papaschinopoulos, Exponential dichotomy for almost periodic linear difference equations,, Ann. Soc. Sci. Bruxelles Sér. I, 102 (1988), 19.   Google Scholar

[25]

C. Pötzsche and S. Siegmund, $C^m$ -smoothness of invariant fiber bundles,, Topol. Methods Nonlinear Anal., 24 (2004), 107.   Google Scholar

[26]

S. Smale, Differentiable dynamical systems,, Bull. Amer. Math. Soc., 73 (1967), 747.   Google Scholar

[27]

S. Wiggins, "Normally Hyperbolic Invariant Manifolds in Dynamical Systems," With the assistance of György Haller and Igor Mezić, Applied Mathematical Sciences, 105,, Springer-Verlag, (1994).   Google Scholar

[1]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[2]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[3]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[4]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[5]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[6]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[7]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[8]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[9]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[10]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[11]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[12]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[13]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[14]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[15]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[16]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[17]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[18]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[19]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[20]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]