May  2012, 17(3): 835-848. doi: 10.3934/dcdsb.2012.17.835

Gravitational and electromagnetic properties of almost standing fields

1. 

5 Allée des sophoras, 92330, Sceaux, France

Received  June 2011 Revised  July 2011 Published  January 2012

For a scalar field propagating at light velocity $c$, kinematic properties of standing waves with constant frequency $\omega{}$ and velocity $v$, are formally identical with mechanic properties of isolated matter. They are both described by equations with the same mathematical structure, expressed by the Lorentz transformation with constant velocities $c$ and $v$. For almost standing waves, the variations of constant quantities lead to their dynamic properties. When they arise from adiabatic variations of the frequency $\Omega(x,t) = \omega \pm \delta\Omega(x,t)$, with $\omega{}$ constant, and $\delta\Omega(x,t) \ll \omega{}$, they lead to interactions which are formally identical with electromagnetic interactions. When they derive from variations of the field velocity $C(x,t) = c \pm \delta C(x,t)$, with $c$ constant, and $\delta C(x,t) \ll c$, they lead to interactions which are formally identical with gravitational interactions. The correspondence between almost standing waves of the field and matter, offers a common frame allowing an approach to investigate how gravitational and electromagnetic properties articulate together.
Citation: Claude Elbaz. Gravitational and electromagnetic properties of almost standing fields. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 835-848. doi: 10.3934/dcdsb.2012.17.835
References:
[1]

C. Elbaz, L'onde stationnaire et la transformation de Lorentz, C.R.Acad. Sc. Paris,. 298 (1984), 543-546.

[2]

C. Elbaz, Proprietes cinematiques des particules matérielles et des ondes stationnaires du champ, Annales de la Fondation Louis de Broglie, 11 (1986), 65-84.

[3]

C. Elbaz, Proprietes dynamiques des particules matérielles et des ondes stationnaires du champ, Annales de la Fondation Louis de Broglie, 14 (1989), 165-176.

[4]

A. Miranville and R. Temam, "Modelisation Mathematique des Milieux Continus," Springer Verlag, 2003.

[5]

R. Temam, "Infinite Dimensional Dynamical Systems in Mechanics and Physics," Second edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997.

[6]

G. I. Sivashinsky, The de Broglie soliton as a localized excitation of the action function, Phys. D, 240 (2011), 406-409. doi: 10.1016/j.physd.2010.10.002.

[7]

C. Elbaz, Classical mechanics of an extended material particle, Phys. Lett. A, 204 (1995), 229-235. doi: 10.1016/0375-9601(95)00470-N.

[8]

C. Elbaz, Dynamic properties of almost monochromatic standing waves, Asymptotic Analysis, 68 (2010), 77-88.

[9]

L. Landau and E. Lifchitz, "The Classical Theory of Fields," Pergamon, 1962.

[10]

M. Born and E. Wolf, "Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light," With contributions by A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman and W. L. Wilcock, Third revised edition, Pergamon Press, Oxford-New York-Paris, 1965.

[11]

C. Elbaz, Optical properties of the Compton effect, J. Phys. Math. Gen., 20 (1987), 279. doi: 10.1088/0305-4470/20/5/004.

[12]

C. Elbaz, On self-field electromagnetic properties for extended material particles, Phys. Lett. A, 127 (1988), 308-314. doi: 10.1016/0375-9601(88)90574-9.

[13]

A. Einstein, Lichtgeswindigkeit und Statik des Gravitationsfeldes, Annalen der Physik, 38 (1912), 355-369. doi: 10.1002/andp.19123430704.

[14]

G. C. Tannoudji and S. Hudlet, A new scientific revolution at the horizon?, in "L'Univers Invisible," Hermann, Paris, 2009.

[15]

T. Padmanabhan, "Gravitation-Foundations and Frontiers," Cambridge Univ. Press, Cambrige, U.K, 2010.

[16]

E. Verlinde, On the origin of gravity and the laws of Newton, arXiv:1001.0785, 2010.

[17]

R. C. Jennison and A. J. Drinkwater, An approach to the understanding of inertia, J. Phys. A, 10 (1977), 167. doi: 10.1088/0305-4470/10/2/005.

[18]

R. C. Jennison, The inertial mass and anomalous internal momentum of a cavity, J. Phys. A, 13 (1980), 2247. doi: 10.1088/0305-4470/13/6/043.

[19]

M. Molski, Extended wave-particle decription of longitudinal photons, J. Phys. A, 24 (1991), 5063. doi: 10.1088/0305-4470/24/21/018.

show all references

References:
[1]

C. Elbaz, L'onde stationnaire et la transformation de Lorentz, C.R.Acad. Sc. Paris,. 298 (1984), 543-546.

[2]

C. Elbaz, Proprietes cinematiques des particules matérielles et des ondes stationnaires du champ, Annales de la Fondation Louis de Broglie, 11 (1986), 65-84.

[3]

C. Elbaz, Proprietes dynamiques des particules matérielles et des ondes stationnaires du champ, Annales de la Fondation Louis de Broglie, 14 (1989), 165-176.

[4]

A. Miranville and R. Temam, "Modelisation Mathematique des Milieux Continus," Springer Verlag, 2003.

[5]

R. Temam, "Infinite Dimensional Dynamical Systems in Mechanics and Physics," Second edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997.

[6]

G. I. Sivashinsky, The de Broglie soliton as a localized excitation of the action function, Phys. D, 240 (2011), 406-409. doi: 10.1016/j.physd.2010.10.002.

[7]

C. Elbaz, Classical mechanics of an extended material particle, Phys. Lett. A, 204 (1995), 229-235. doi: 10.1016/0375-9601(95)00470-N.

[8]

C. Elbaz, Dynamic properties of almost monochromatic standing waves, Asymptotic Analysis, 68 (2010), 77-88.

[9]

L. Landau and E. Lifchitz, "The Classical Theory of Fields," Pergamon, 1962.

[10]

M. Born and E. Wolf, "Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light," With contributions by A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor, P. A. Wayman and W. L. Wilcock, Third revised edition, Pergamon Press, Oxford-New York-Paris, 1965.

[11]

C. Elbaz, Optical properties of the Compton effect, J. Phys. Math. Gen., 20 (1987), 279. doi: 10.1088/0305-4470/20/5/004.

[12]

C. Elbaz, On self-field electromagnetic properties for extended material particles, Phys. Lett. A, 127 (1988), 308-314. doi: 10.1016/0375-9601(88)90574-9.

[13]

A. Einstein, Lichtgeswindigkeit und Statik des Gravitationsfeldes, Annalen der Physik, 38 (1912), 355-369. doi: 10.1002/andp.19123430704.

[14]

G. C. Tannoudji and S. Hudlet, A new scientific revolution at the horizon?, in "L'Univers Invisible," Hermann, Paris, 2009.

[15]

T. Padmanabhan, "Gravitation-Foundations and Frontiers," Cambridge Univ. Press, Cambrige, U.K, 2010.

[16]

E. Verlinde, On the origin of gravity and the laws of Newton, arXiv:1001.0785, 2010.

[17]

R. C. Jennison and A. J. Drinkwater, An approach to the understanding of inertia, J. Phys. A, 10 (1977), 167. doi: 10.1088/0305-4470/10/2/005.

[18]

R. C. Jennison, The inertial mass and anomalous internal momentum of a cavity, J. Phys. A, 13 (1980), 2247. doi: 10.1088/0305-4470/13/6/043.

[19]

M. Molski, Extended wave-particle decription of longitudinal photons, J. Phys. A, 24 (1991), 5063. doi: 10.1088/0305-4470/24/21/018.

[1]

Michael Stiassnie, Raphael Stuhlmeier. Progressive waves on a blunt interface. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3171-3182. doi: 10.3934/dcds.2014.34.3171

[2]

Ademir Pastor. On three-wave interaction Schrödinger systems with quadratic nonlinearities: Global well-posedness and standing waves. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2217-2242. doi: 10.3934/cpaa.2019100

[3]

Michael Herrmann. Homoclinic standing waves in focusing DNLS equations. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 737-752. doi: 10.3934/dcds.2011.31.737

[4]

Michiel Bertsch, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. Standing and travelling waves in a parabolic-hyperbolic system. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5603-5635. doi: 10.3934/dcds.2019246

[5]

Martina Chirilus-Bruckner, Guido Schneider. Interaction of oscillatory packets of water waves. Conference Publications, 2015, 2015 (special) : 267-275. doi: 10.3934/proc.2015.0267

[6]

Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080

[7]

Huifang Jia, Gongbao Li, Xiao Luo. Stable standing waves for cubic nonlinear Schrödinger systems with partial confinement. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2739-2766. doi: 10.3934/dcds.2020148

[8]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[9]

Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073

[10]

Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193

[11]

Masahito Ohta, Grozdena Todorova. Strong instability of standing waves for nonlinear Klein-Gordon equations. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 315-322. doi: 10.3934/dcds.2005.12.315

[12]

François Genoud, Charles A. Stuart. Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 137-186. doi: 10.3934/dcds.2008.21.137

[13]

Zhi Chen, Xianhua Tang, Ning Zhang, Jian Zhang. Standing waves for Schrödinger-Poisson system with general nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6103-6129. doi: 10.3934/dcds.2019266

[14]

Marco Ghimenti, Stefan Le Coz, Marco Squassina. On the stability of standing waves of Klein-Gordon equations in a semiclassical regime. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2389-2401. doi: 10.3934/dcds.2013.33.2389

[15]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[16]

Salvador Cruz-García, Catherine García-Reimbert. On the spectral stability of standing waves of the one-dimensional $M^5$-model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1079-1099. doi: 10.3934/dcdsb.2016.21.1079

[17]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[18]

Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure and Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831

[19]

François Genoud. Orbitally stable standing waves for the asymptotically linear one-dimensional NLS. Evolution Equations and Control Theory, 2013, 2 (1) : 81-100. doi: 10.3934/eect.2013.2.81

[20]

Juan Huang. Scattering and strong instability of the standing waves for dipolar quantum gases. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4493-4513. doi: 10.3934/dcdsb.2020297

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (117)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]