May  2012, 17(3): 915-932. doi: 10.3934/dcdsb.2012.17.915

On the stability of homoclinic loops with higher dimension

1. 

Department of Mathematics, East China Normal University, Shanghai, 200241

Received  September 2010 Revised  March 2011 Published  January 2012

In this paper the stability of homoclinic loops of saddle equilibrium states in high dimensional systems is analyzed. By constructing local moving frame along the unperturbed homoclinic orbit, the refined Poincaré map is well established, and simple criteria are given for the stability of the saddle homoclinic loop. Some known results are extended.
Citation: Xingbo Liu, Deming Zhu. On the stability of homoclinic loops with higher dimension. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 915-932. doi: 10.3934/dcdsb.2012.17.915
References:
[1]

D. G.Aronson, S. A. van Gils and M. Krupa, Homoclinic twist bifurcations with $\mathbbZ_2$ symmetry,, J. Non. Sci, 4 (1994), 195.  doi: 10.1007/BF02430632.  Google Scholar

[2]

F. Battelli and M.Fečkan, Subharmonic solutions in singular systems,, J. Diff. Eqs, 132 (1996), 21.   Google Scholar

[3]

A. R.Champneys, J. Härterich and B. Sandstede, A non-transverse homoclinic orbit to a saddle-node equilibrium,, Ergodic Theory and Dynamical System, 16 (1996), 431.  doi: 10.1017/S0143385700008919.  Google Scholar

[4]

M. Fečkan and J. Gruendler, Homoclinic-Hopf interaction: An autoparametric bifurcation,, Proc. Roy. Soc. Edinburgh Sect. A, 130 (2000), 999.  doi: 10.1017/S0308210500000548.  Google Scholar

[5]

A. J. Homoburg and J. Knobloch, Multiple homoclinic orbits in conservative and reversible systems,, Trans. Amer. Math. Soc, 358 (2006), 1715.  doi: 10.1090/S0002-9947-05-03793-1.  Google Scholar

[6]

J. Klaus and J. Knobloch, Bifurcation of homoclinic orbits to a saddle-center in reversible systems,, Inter. J. Bifu Chaos Appl. Sci. Engrg., 13 (2003), 2603.  doi: 10.1142/S0218127403008119.  Google Scholar

[7]

J. S. W. Lamb, M.-A. Teixeira and K. N. Webster, Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in $R^3$,, J. Diff. Eqs., 219 (2005), 78.  doi: 10.1016/j.jde.2005.02.019.  Google Scholar

[8]

F. Dumortier, R. Roussarie and J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3,, Ergodic Theory Dynam. Systems, 7 (1987), 375.  doi: 10.1017/S0143385700004119.  Google Scholar

[9]

J. D. M. Rademacher, Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit,, J. Diff. Equs., 218 (2005), 390.  doi: 10.1016/j.jde.2005.03.016.  Google Scholar

[10]

K. Yagasaki, The method of Melnikov for perturbations of multi-degree-of-freedom Hamiltonian systems,, Nonlinearity, 12 (1999), 799.  doi: 10.1088/0951-7715/12/4/304.  Google Scholar

[11]

B. Krauskopf and B. E. Oldeman, Bifurcations of global reinjection orbits near a saddle-node hopf bifurcation,, Nonlinearity, 19 (2006), 2149.  doi: 10.1088/0951-7715/19/9/010.  Google Scholar

[12]

M. A. Han, D. J. Luo and D. M. Zhu, Uniqueness of limit cycles bifurcating from a singular closed orbit. III,, Acta Math. Sinica, 35 (1992), 673.   Google Scholar

[13]

M. A. Han, S. C. Hu and X. B. Liu, On the stability of double homoclinic and heteroclinic cycles,, Nonlinear Analysis, 53 (2003), 701.  doi: 10.1016/S0362-546X(02)00301-2.  Google Scholar

[14]

J. B. Li and B. Y. Feng, "Stability, Bifurcation and Chaos,", Yun Nan Science Press, (1995).   Google Scholar

[15]

J. W. Reyn, A stability criterion for separatrix polygons in the phase plane,, Nieuw Arch. Wisk. (3), 27 (1979), 238.   Google Scholar

[16]

P. Joyal, Generalized Hopf bifurcation and its dual generalized homoclinic bifurcation,, SIAM J. Appl. Math., 48 (1988), 481.  doi: 10.1137/0148027.  Google Scholar

[17]

S. Wiggins, "Global Bifurcation and Chaos. Analytical Methods,", Applied Mathematical Sciences, 73 (1988).   Google Scholar

[18]

B. Y. Feng, Stability of homoclinic and heteroclinic cycles in space,, Acta Math. Sinica (Chin. Ser.), 39 (1996), 649.   Google Scholar

[19]

E. Leontovič, On the generation of limit cycles from separatrices,, Doklady Akad. Nauk SSSR (N.S.), 78 (1951), 641.   Google Scholar

[20]

L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev and L. O. Chua, "Methods of Qualitative Theory in Nonlinear Dynamics,", Part II. World Scientific Series on Nonlinear Science, 5 (2001).   Google Scholar

[21]

M. V. Shashkov and D. V. Turaev, An existence theorem of smooth nonlocal center manifolds for systems close to a system with a homoclinic loop,, J. Nonlinear Sci., 9 (1999), 525.  doi: 10.1007/s003329900078.  Google Scholar

[22]

D. M. Zhu, Problems in homoclinic bifurcations with higher dimensions,, Acta Math. Sinica (N.S.), 14 (1998), 341.   Google Scholar

[23]

D. M. Zhu and Z. H. Xia, Bifurcations of heteroclinic loops,, Sci. China Ser A, 41 (1998), 837.  doi: 10.1007/BF02871667.  Google Scholar

[24]

D. M. Zhu, Invariants of coordinate transformation,, J. of East China Normal Univ. Nat. Sci. Ed., 1998 (): 19.   Google Scholar

show all references

References:
[1]

D. G.Aronson, S. A. van Gils and M. Krupa, Homoclinic twist bifurcations with $\mathbbZ_2$ symmetry,, J. Non. Sci, 4 (1994), 195.  doi: 10.1007/BF02430632.  Google Scholar

[2]

F. Battelli and M.Fečkan, Subharmonic solutions in singular systems,, J. Diff. Eqs, 132 (1996), 21.   Google Scholar

[3]

A. R.Champneys, J. Härterich and B. Sandstede, A non-transverse homoclinic orbit to a saddle-node equilibrium,, Ergodic Theory and Dynamical System, 16 (1996), 431.  doi: 10.1017/S0143385700008919.  Google Scholar

[4]

M. Fečkan and J. Gruendler, Homoclinic-Hopf interaction: An autoparametric bifurcation,, Proc. Roy. Soc. Edinburgh Sect. A, 130 (2000), 999.  doi: 10.1017/S0308210500000548.  Google Scholar

[5]

A. J. Homoburg and J. Knobloch, Multiple homoclinic orbits in conservative and reversible systems,, Trans. Amer. Math. Soc, 358 (2006), 1715.  doi: 10.1090/S0002-9947-05-03793-1.  Google Scholar

[6]

J. Klaus and J. Knobloch, Bifurcation of homoclinic orbits to a saddle-center in reversible systems,, Inter. J. Bifu Chaos Appl. Sci. Engrg., 13 (2003), 2603.  doi: 10.1142/S0218127403008119.  Google Scholar

[7]

J. S. W. Lamb, M.-A. Teixeira and K. N. Webster, Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in $R^3$,, J. Diff. Eqs., 219 (2005), 78.  doi: 10.1016/j.jde.2005.02.019.  Google Scholar

[8]

F. Dumortier, R. Roussarie and J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3,, Ergodic Theory Dynam. Systems, 7 (1987), 375.  doi: 10.1017/S0143385700004119.  Google Scholar

[9]

J. D. M. Rademacher, Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit,, J. Diff. Equs., 218 (2005), 390.  doi: 10.1016/j.jde.2005.03.016.  Google Scholar

[10]

K. Yagasaki, The method of Melnikov for perturbations of multi-degree-of-freedom Hamiltonian systems,, Nonlinearity, 12 (1999), 799.  doi: 10.1088/0951-7715/12/4/304.  Google Scholar

[11]

B. Krauskopf and B. E. Oldeman, Bifurcations of global reinjection orbits near a saddle-node hopf bifurcation,, Nonlinearity, 19 (2006), 2149.  doi: 10.1088/0951-7715/19/9/010.  Google Scholar

[12]

M. A. Han, D. J. Luo and D. M. Zhu, Uniqueness of limit cycles bifurcating from a singular closed orbit. III,, Acta Math. Sinica, 35 (1992), 673.   Google Scholar

[13]

M. A. Han, S. C. Hu and X. B. Liu, On the stability of double homoclinic and heteroclinic cycles,, Nonlinear Analysis, 53 (2003), 701.  doi: 10.1016/S0362-546X(02)00301-2.  Google Scholar

[14]

J. B. Li and B. Y. Feng, "Stability, Bifurcation and Chaos,", Yun Nan Science Press, (1995).   Google Scholar

[15]

J. W. Reyn, A stability criterion for separatrix polygons in the phase plane,, Nieuw Arch. Wisk. (3), 27 (1979), 238.   Google Scholar

[16]

P. Joyal, Generalized Hopf bifurcation and its dual generalized homoclinic bifurcation,, SIAM J. Appl. Math., 48 (1988), 481.  doi: 10.1137/0148027.  Google Scholar

[17]

S. Wiggins, "Global Bifurcation and Chaos. Analytical Methods,", Applied Mathematical Sciences, 73 (1988).   Google Scholar

[18]

B. Y. Feng, Stability of homoclinic and heteroclinic cycles in space,, Acta Math. Sinica (Chin. Ser.), 39 (1996), 649.   Google Scholar

[19]

E. Leontovič, On the generation of limit cycles from separatrices,, Doklady Akad. Nauk SSSR (N.S.), 78 (1951), 641.   Google Scholar

[20]

L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev and L. O. Chua, "Methods of Qualitative Theory in Nonlinear Dynamics,", Part II. World Scientific Series on Nonlinear Science, 5 (2001).   Google Scholar

[21]

M. V. Shashkov and D. V. Turaev, An existence theorem of smooth nonlocal center manifolds for systems close to a system with a homoclinic loop,, J. Nonlinear Sci., 9 (1999), 525.  doi: 10.1007/s003329900078.  Google Scholar

[22]

D. M. Zhu, Problems in homoclinic bifurcations with higher dimensions,, Acta Math. Sinica (N.S.), 14 (1998), 341.   Google Scholar

[23]

D. M. Zhu and Z. H. Xia, Bifurcations of heteroclinic loops,, Sci. China Ser A, 41 (1998), 837.  doi: 10.1007/BF02871667.  Google Scholar

[24]

D. M. Zhu, Invariants of coordinate transformation,, J. of East China Normal Univ. Nat. Sci. Ed., 1998 (): 19.   Google Scholar

[1]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Homoclinic orbits for a class of asymptotically quadratic Hamiltonian systems. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2855-2878. doi: 10.3934/cpaa.2019128

[2]

Ting Yang. Homoclinic orbits and chaos in the generalized Lorenz system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1097-1108. doi: 10.3934/dcdsb.2019210

[3]

Addolorata Salvatore. Multiple homoclinic orbits for a class of second order perturbed Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 778-787. doi: 10.3934/proc.2003.2003.778

[4]

Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203

[5]

Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1929-1940. doi: 10.3934/cpaa.2015.14.1929

[6]

Jianquan Li, Yanni Xiao, Yali Yang. Global analysis of a simple parasite-host model with homoclinic orbits. Mathematical Biosciences & Engineering, 2012, 9 (4) : 767-784. doi: 10.3934/mbe.2012.9.767

[7]

Yingxiang Xu, Yongkui Zou. Preservation of homoclinic orbits under discretization of delay differential equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 275-299. doi: 10.3934/dcds.2011.31.275

[8]

John Guckenheimer, Christian Kuehn. Homoclinic orbits of the FitzHugh-Nagumo equation: The singular-limit. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 851-872. doi: 10.3934/dcdss.2009.2.851

[9]

W.R. Derrick, P. van den Driessche. Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 299-309. doi: 10.3934/dcdsb.2003.3.299

[10]

Christian Bonatti, Lorenzo J. Díaz, Todd Fisher. Super-exponential growth of the number of periodic orbits inside homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 589-604. doi: 10.3934/dcds.2008.20.589

[11]

Chen-Chang Peng, Kuan-Ju Chen. Existence of transversal homoclinic orbits in higher dimensional discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1181-1197. doi: 10.3934/dcdsb.2010.14.1181

[12]

Flaviano Battelli, Ken Palmer. A remark about Sil'nikov saddle-focus homoclinic orbits. Communications on Pure & Applied Analysis, 2011, 10 (3) : 817-830. doi: 10.3934/cpaa.2011.10.817

[13]

Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807

[14]

Boris Buffoni, Laurent Landry. Multiplicity of homoclinic orbits in quasi-linear autonomous Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 75-116. doi: 10.3934/dcds.2010.27.75

[15]

Daniel Wilczak. Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1039-1055. doi: 10.3934/dcdsb.2009.11.1039

[16]

Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021

[17]

Xinfu Chen. Lorenz equations part II: "randomly" rotated homoclinic orbits and chaotic trajectories. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 121-140. doi: 10.3934/dcds.1996.2.121

[18]

Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions. Communications on Pure & Applied Analysis, 2019, 18 (1) : 425-434. doi: 10.3934/cpaa.2019021

[19]

Jun Wang, Junxiang Xu, Fubao Zhang. Homoclinic orbits for a class of Hamiltonian systems with superquadratic or asymptotically quadratic potentials. Communications on Pure & Applied Analysis, 2011, 10 (1) : 269-286. doi: 10.3934/cpaa.2011.10.269

[20]

Tiantian Wu, Xiao-Song Yang. A new class of 3-dimensional piecewise affine systems with homoclinic orbits. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5119-5129. doi: 10.3934/dcds.2016022

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]