May  2012, 17(3): 933-942. doi: 10.3934/dcdsb.2012.17.933

Spiral rotating waves of a geodesic curvature flow on the unit sphere

1. 

Department of Mathematics, Tongji University, Shanghai 200092

Received  December 2010 Revised  July 2011 Published  January 2012

This paper is concerned with a geodesic curvature flow on the unit sphere. In each zone between the equator and the circle with latitude $\theta_0 \in (0, \frac{\pi}{2} ]$, we give the existence and uniqueness of a spiral rotating wave of the geodesic curvature flow.
Citation: Bendong Lou. Spiral rotating waves of a geodesic curvature flow on the unit sphere. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 933-942. doi: 10.3934/dcdsb.2012.17.933
References:
[1]

M. Alfaro, D. Hilhorst and H. Matano, The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system,, J. Differential Equations, 245 (2008), 505.  doi: 10.1016/j.jde.2008.01.014.  Google Scholar

[2]

S. J. Altschuler, Singularities of the curve shrinking flow for space curves,, J. Differential Geom., 34 (1991), 491.   Google Scholar

[3]

F. Amdjadi and J. Gomatam, Spiral waves on static and moving spherical domains, J., Comput. Appl. Math., 182 (2005), 472.  doi: 10.1016/j.cam.2004.12.027.  Google Scholar

[4]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential Equations, 96 (1992), 116.  doi: 10.1016/0022-0396(92)90146-E.  Google Scholar

[5]

K.-S. Chou and X.-P. Zhu, "The Curve Shorting Problem,", Chapman & Hall/CRC, (2001).  doi: 10.1201/9781420035704.  Google Scholar

[6]

P. C. Fife, "Dynamics of Internal Layers and Diffusive Interfaces,", CBMS-NSF Regional Conference Series in Applied Mathematics, 53 (1988).   Google Scholar

[7]

J. Gomatam and F. Amdjadi, Reaction-diffusion equations on a sphere: Meandering of spiral waves,, Physical Review E (3), 56 (1997), 3913.   Google Scholar

[8]

R. Ikota, N. Ishimura and T. Yamaguchi, On the structure of steady solutions for the kinematic model of spiral waves in excitable media,, Japan J. Indust. Appl. Math., 15 (1998), 317.  doi: 10.1007/BF03167407.  Google Scholar

[9]

J. P. Keener, The core of the spiral,, SIAM J. Appl. Math., 52 (1992), 1370.  doi: 10.1137/0152079.  Google Scholar

[10]

J. P. Keener and J. J. Tyson, Spiral waves in the Belousov-Zhabotinski reaction,, Phys. D, 21 (1986), 307.  doi: 10.1016/0167-2789(86)90007-2.  Google Scholar

[11]

B. Lou, Periodic rotating waves of a geodesic curvature flow on the sphere,, Commun. Partial Differential Equations, 32 (2007), 525.  doi: 10.1080/03605300701249663.  Google Scholar

[12]

B. D. Lou and L. Zhou, Singular limit of FitzHugh-Nagumo equations on a sphere,, ZAMM Z. Angew. Math. Mech., 88 (2008), 644.  doi: 10.1002/zamm.200700144.  Google Scholar

[13]

H. Matano, K.-I. Nakamura and B. Lou, Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit,, Netw. Heterog. Media, 1 (2006), 537.  doi: 10.3934/nhm.2006.1.537.  Google Scholar

[14]

K.-I. Nakamura, H. Matano, D. Hilhorst and R. Schätzle, Singular limit of a reaction-diffusion equation with a spatially inhomogeneous reaction term,, J. Statist. Phys., 95 (1999), 1165.  doi: 10.1023/A:1004518904533.  Google Scholar

[15]

T. Ogiwara and K.-I. Nakamura, Spiral traveling wave solutions of nonlinear diffusion equations related to a model of spiral crystal growth,, Publ. Res. Inst. Math. Sci., 39 (2003), 767.  doi: 10.2977/prims/1145476046.  Google Scholar

show all references

References:
[1]

M. Alfaro, D. Hilhorst and H. Matano, The singular limit of the Allen-Cahn equation and the FitzHugh-Nagumo system,, J. Differential Equations, 245 (2008), 505.  doi: 10.1016/j.jde.2008.01.014.  Google Scholar

[2]

S. J. Altschuler, Singularities of the curve shrinking flow for space curves,, J. Differential Geom., 34 (1991), 491.   Google Scholar

[3]

F. Amdjadi and J. Gomatam, Spiral waves on static and moving spherical domains, J., Comput. Appl. Math., 182 (2005), 472.  doi: 10.1016/j.cam.2004.12.027.  Google Scholar

[4]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential Equations, 96 (1992), 116.  doi: 10.1016/0022-0396(92)90146-E.  Google Scholar

[5]

K.-S. Chou and X.-P. Zhu, "The Curve Shorting Problem,", Chapman & Hall/CRC, (2001).  doi: 10.1201/9781420035704.  Google Scholar

[6]

P. C. Fife, "Dynamics of Internal Layers and Diffusive Interfaces,", CBMS-NSF Regional Conference Series in Applied Mathematics, 53 (1988).   Google Scholar

[7]

J. Gomatam and F. Amdjadi, Reaction-diffusion equations on a sphere: Meandering of spiral waves,, Physical Review E (3), 56 (1997), 3913.   Google Scholar

[8]

R. Ikota, N. Ishimura and T. Yamaguchi, On the structure of steady solutions for the kinematic model of spiral waves in excitable media,, Japan J. Indust. Appl. Math., 15 (1998), 317.  doi: 10.1007/BF03167407.  Google Scholar

[9]

J. P. Keener, The core of the spiral,, SIAM J. Appl. Math., 52 (1992), 1370.  doi: 10.1137/0152079.  Google Scholar

[10]

J. P. Keener and J. J. Tyson, Spiral waves in the Belousov-Zhabotinski reaction,, Phys. D, 21 (1986), 307.  doi: 10.1016/0167-2789(86)90007-2.  Google Scholar

[11]

B. Lou, Periodic rotating waves of a geodesic curvature flow on the sphere,, Commun. Partial Differential Equations, 32 (2007), 525.  doi: 10.1080/03605300701249663.  Google Scholar

[12]

B. D. Lou and L. Zhou, Singular limit of FitzHugh-Nagumo equations on a sphere,, ZAMM Z. Angew. Math. Mech., 88 (2008), 644.  doi: 10.1002/zamm.200700144.  Google Scholar

[13]

H. Matano, K.-I. Nakamura and B. Lou, Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit,, Netw. Heterog. Media, 1 (2006), 537.  doi: 10.3934/nhm.2006.1.537.  Google Scholar

[14]

K.-I. Nakamura, H. Matano, D. Hilhorst and R. Schätzle, Singular limit of a reaction-diffusion equation with a spatially inhomogeneous reaction term,, J. Statist. Phys., 95 (1999), 1165.  doi: 10.1023/A:1004518904533.  Google Scholar

[15]

T. Ogiwara and K.-I. Nakamura, Spiral traveling wave solutions of nonlinear diffusion equations related to a model of spiral crystal growth,, Publ. Res. Inst. Math. Sci., 39 (2003), 767.  doi: 10.2977/prims/1145476046.  Google Scholar

[1]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[2]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[3]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[4]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[7]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[8]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[9]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]