
Previous Article
Global stability and convergence rate of traveling waves for a nonlocal model in periodic media
 DCDSB Home
 This Issue

Next Article
On the existence of doubly symmetric "Schubartlike" periodic orbits
A constructive proof of the existence of a semiconjugacy for a one dimensional map
1.  School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 852871804, United States 
2.  Department of Financial and Computational Mathematics, Providence University, Taichung 43301, Taiwan 
References:
[1] 
, IEEE standard for floatingpoint arithmetic,, The Institute of Electrical and Electronics Engineers, (2008). 
[2] 
Ll. Alsedà, J. Llibre and M. Misurewicz, "Combinatorial Dynamics and Entropy in Dimension One," 2^{nd} edition, Advanced Series in Nonlinear Dynamics, 5, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. 
[3] 
J. Banks, V. Dragan and A. Jones, "Chaos: A Mathematical Introduction," Australian Mathematical Society Lecture Series, 18, Cambridge University Press, Cambridge, 2003. 
[4] 
K. M. Brucks and H. Bruin, "Topics from OneDimensional Dynamics," London Mathematical Society Student Texts, 62, Cambridge University Press, Cambridge, 2004. 
[5] 
R. L. Devaney, "An Introduction to Chaotic Dynamical Systems," 2^{nd} edition, AddisonWesley Studies in Nonlinearity, AddisonWesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989. 
[6] 
N. A. Fotiades and M. A. Boudourides, Topological conjugacies of piecewise monotone interval maps, International Journal of Mathematics and Mathematical Sciences, 25 (2001), 119127. doi: 10.1155/S0161171201004343. 
[7] 
P. Henrici, "Essentials of Numerical Analysis with Pocket Calculator Demonstrations," John Wiley & Sons, Inc., New York, 1982. 
[8] 
J. Milnor and W. Thurston, On iterated maps of the interval, in "Dynamical Systems" (ed. J. C. Alexander) (College Park, MD, 198687), Lecture Notes in Mathematics, 1342, Springer, Berlin, (1988), 465563. 
[9] 
W. Parry, Symbolic dynamics and transformations of the unit interval, Transactions of the American Mathematical Society, 122 (1966), 368378. doi: 10.1090/S00029947196601976835. 
show all references
References:
[1] 
, IEEE standard for floatingpoint arithmetic,, The Institute of Electrical and Electronics Engineers, (2008). 
[2] 
Ll. Alsedà, J. Llibre and M. Misurewicz, "Combinatorial Dynamics and Entropy in Dimension One," 2^{nd} edition, Advanced Series in Nonlinear Dynamics, 5, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. 
[3] 
J. Banks, V. Dragan and A. Jones, "Chaos: A Mathematical Introduction," Australian Mathematical Society Lecture Series, 18, Cambridge University Press, Cambridge, 2003. 
[4] 
K. M. Brucks and H. Bruin, "Topics from OneDimensional Dynamics," London Mathematical Society Student Texts, 62, Cambridge University Press, Cambridge, 2004. 
[5] 
R. L. Devaney, "An Introduction to Chaotic Dynamical Systems," 2^{nd} edition, AddisonWesley Studies in Nonlinearity, AddisonWesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989. 
[6] 
N. A. Fotiades and M. A. Boudourides, Topological conjugacies of piecewise monotone interval maps, International Journal of Mathematics and Mathematical Sciences, 25 (2001), 119127. doi: 10.1155/S0161171201004343. 
[7] 
P. Henrici, "Essentials of Numerical Analysis with Pocket Calculator Demonstrations," John Wiley & Sons, Inc., New York, 1982. 
[8] 
J. Milnor and W. Thurston, On iterated maps of the interval, in "Dynamical Systems" (ed. J. C. Alexander) (College Park, MD, 198687), Lecture Notes in Mathematics, 1342, Springer, Berlin, (1988), 465563. 
[9] 
W. Parry, Symbolic dynamics and transformations of the unit interval, Transactions of the American Mathematical Society, 122 (1966), 368378. doi: 10.1090/S00029947196601976835. 
[1] 
Adriano Da Silva, Alexandre J. Santana, Simão N. Stelmastchuk. Topological conjugacy of linear systems on Lie groups. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 34113421. doi: 10.3934/dcds.2017144 
[2] 
Fritz Colonius, Alexandre J. Santana. Topological conjugacy for affinelinear flows and control systems. Communications on Pure and Applied Analysis, 2011, 10 (3) : 847857. doi: 10.3934/cpaa.2011.10.847 
[3] 
Lorenzo Sella, Pieter Collins. Computation of symbolic dynamics for twodimensional piecewiseaffine maps. Discrete and Continuous Dynamical Systems  B, 2011, 15 (3) : 739767. doi: 10.3934/dcdsb.2011.15.739 
[4] 
MingChia Li, MingJiea Lyu. Topological conjugacy for Lipschitz perturbations of nonautonomous systems. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 50115024. doi: 10.3934/dcds.2016017 
[5] 
Álvaro Castañeda, Gonzalo Robledo. Dichotomy spectrum and almost topological conjugacy on nonautonomus unbounded difference systems. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 22872304. doi: 10.3934/dcds.2018094 
[6] 
Peter Ashwin, XinChu Fu. Symbolic analysis for some planar piecewise linear maps. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 15331548. doi: 10.3934/dcds.2003.9.1533 
[7] 
Alfredo Marzocchi, Sara Zandonella Necca. Attractors for dynamical systems in topological spaces. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 585597. doi: 10.3934/dcds.2002.8.585 
[8] 
Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 66316642. doi: 10.3934/dcds.2019288 
[9] 
Chao Ma, Baowei Wang, Jun Wu. Diophantine approximation of the orbits in topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 24552471. doi: 10.3934/dcds.2019104 
[10] 
Yun Zhao, WenChiao Cheng, ChihChang Ho. Qentropy for general topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 20592075. doi: 10.3934/dcds.2019086 
[11] 
Àlex Haro, Rafael de la Llave. A parameterization method for the computation of invariant tori and their whiskers in quasiperiodic maps: Numerical algorithms. Discrete and Continuous Dynamical Systems  B, 2006, 6 (6) : 12611300. doi: 10.3934/dcdsb.2006.6.1261 
[12] 
Prof. Dr.rer.nat Widodo. Topological entropy of shift function on the sequences space induced by expanding piecewise linear transformations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 191208. doi: 10.3934/dcds.2002.8.191 
[13] 
James P. Kelly, Kevin McGoff. Entropy conjugacy for Markov multimaps of the interval. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 20712094. doi: 10.3934/dcds.2020353 
[14] 
Yong Fang. On smooth conjugacy of expanding maps in higher dimensions. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 687697. doi: 10.3934/dcds.2011.30.687 
[15] 
Malo Jézéquel. Parameter regularity of dynamical determinants of expanding maps of the circle and an application to linear response. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 927958. doi: 10.3934/dcds.2019039 
[16] 
João Ferreira Alves, Michal Málek. Zeta functions and topological entropy of periodic nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 465482. doi: 10.3934/dcds.2013.33.465 
[17] 
Noriaki Kawaguchi. Topological stability and shadowing of zerodimensional dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 27432761. doi: 10.3934/dcds.2019115 
[18] 
H.T. Banks, S. Dediu, H.K. Nguyen. Sensitivity of dynamical systems to parameters in a convex subset of a topological vector space. Mathematical Biosciences & Engineering, 2007, 4 (3) : 403430. doi: 10.3934/mbe.2007.4.403 
[19] 
Jaume Llibre, Lucyjane de A. S. Menezes. On the limit cycles of a class of discontinuous piecewise linear differential systems. Discrete and Continuous Dynamical Systems  B, 2020, 25 (5) : 18351858. doi: 10.3934/dcdsb.2020005 
[20] 
Victoriano Carmona, Soledad FernándezGarcía, Antonio E. Teruel. Saddlenode of limit cycles in planar piecewise linear systems and applications. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 52755299. doi: 10.3934/dcds.2019215 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]