\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global stability and convergence rate of traveling waves for a nonlocal model in periodic media

Abstract Related Papers Cited by
  • In this paper, we study the stability and convergence rate of traveling wavefronts for a nonlocal population model in a periodic habitat \[ \left\{ \begin{array}{ll} \displaystyle\frac{\partial u(t,x)}{\partial t}=D(x)\frac{\partial ^2u(t,x)}{% \partial x^2}-d(x,u(t,x))+\int_R\Gamma (\tau ,x,y)b(y,u(t-\tau ,y))dy, & \\ u(\theta ,x)=\varphi (\theta ,x),\theta \in [-\tau ,0],& \end{array} \right. \] where $D(x), d(x,\cdot ), b(x,\cdot ), \Gamma (\tau ,x,y)$ are L-periodic functions with respect to space $x$ (and $y$) for some positive real constant $L $. Using the analysis of the principal eigenvalue of a non-local linear operator, we show that all noncritical wavefronts are globally exponentially stable, as long as the initial perturbation is uniformly bounded in a weighted space. This result can be generalized to n-dimensional case and three applications of our main results are also presented.
    Mathematics Subject Classification: Primary: 35K57, 34K20; Secondary: 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. F. Britton, "Reaction-diffusion Equations and their Applications to Biology,'' Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1986.

    [2]

    P. C. Fife, "Mathematical Aspect of Reacting and Diffusing Systems,'' Lecture Notes in Biomath., 28, Springer-Verlag, Berlin-New York, 1979.

    [3]

    P. C. Fife and J. B. Mcleod, The approach solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.doi: 10.1007/BF00250432.

    [4]

    A. Friedman, "Partial Differential Equations of Parabolic Type,'' Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.

    [5]

    S. A. Gourley and Y. Kuang, Wavefront and global stability in a time-delayed population model with stage structure, R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 459 (2003), 1563-1579.doi: 10.1098/rspa.2002.1094.

    [6]

    A. N. Kolmogorov, I. G. Petrowsky and N. S. Piscounov, Étude de l'équation de la diffusion avec croissance de la quantité de matiére et son application á un probléme biologique, Bull. Univ. d'État á Moscou, Ser. Internat. A, 1 (1937), 1-26.

    [7]

    M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity, J. Differential Equations, 247 (2009), 495-510.doi: 10.1016/j.jde.2008.12.026.

    [8]

    M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity, J. Differential Equations, 247 (2009), 511-529.doi: 10.1016/j.jde.2008.12.020.

    [9]

    M. Mei and J. W.-H. So, Stability of strong travelling waves for a non-local time-delayed reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 551-568.

    [10]

    M. Mei, C. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM J. Math. Anal., 42 (2010), 2762-2790.doi: 10.1137/090776342.

    [11]

    J. D. Murry, "Mathematical Biology,'' Vols. I and II, Springer-Verlag, New York, 2002.

    [12]

    A. N. Stokes, On two types of moving front in quasilinear diffusion, Math. Biosci., 31 (1976), 307-315.doi: 10.1016/0025-5564(76)90087-0.

    [13]

    V. A. Vasiliev, Yu. M. Romanovskii, D. S. Chernavskki and G. Yakhno, "Autowave Processes in Kinetic Systems,'' Reidel, Dorgrecht, 1987.

    [14]

    P. Weng and X.-Q. Zhao, Spatial dynamics of a nonlocal and delayed population model in a periodic habitat, Discrete and Continuous Dynamical Systems Ser. A, 29 (2011), 343-366.doi: 10.3934/dcds.2011.29.343.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(86) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return