May  2012, 17(3): 993-1007. doi: 10.3934/dcdsb.2012.17.993

Global stability and convergence rate of traveling waves for a nonlocal model in periodic media

1. 

School of Mathematics and Physics, University of South China, Hengyang, 421001, China

2. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St.Johns, Newfoundland, A1C 5S7, Canada

Received  May 2011 Revised  August 2011 Published  January 2012

In this paper, we study the stability and convergence rate of traveling wavefronts for a nonlocal population model in a periodic habitat \[ \left\{ \begin{array}{ll} \displaystyle\frac{\partial u(t,x)}{\partial t}=D(x)\frac{\partial ^2u(t,x)}{% \partial x^2}-d(x,u(t,x))+\int_R\Gamma (\tau ,x,y)b(y,u(t-\tau ,y))dy, & \\ u(\theta ,x)=\varphi (\theta ,x),\theta \in [-\tau ,0],& \end{array} \right. \] where $D(x), d(x,\cdot ), b(x,\cdot ), \Gamma (\tau ,x,y)$ are L-periodic functions with respect to space $x$ (and $y$) for some positive real constant $L $. Using the analysis of the principal eigenvalue of a non-local linear operator, we show that all noncritical wavefronts are globally exponentially stable, as long as the initial perturbation is uniformly bounded in a weighted space. This result can be generalized to n-dimensional case and three applications of our main results are also presented.
Citation: Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993
References:
[1]

N. F. Britton, "Reaction-diffusion Equations and their Applications to Biology,'' Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1986.

[2]

P. C. Fife, "Mathematical Aspect of Reacting and Diffusing Systems,'' Lecture Notes in Biomath., 28, Springer-Verlag, Berlin-New York, 1979.

[3]

P. C. Fife and J. B. Mcleod, The approach solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361. doi: 10.1007/BF00250432.

[4]

A. Friedman, "Partial Differential Equations of Parabolic Type,'' Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.

[5]

S. A. Gourley and Y. Kuang, Wavefront and global stability in a time-delayed population model with stage structure, R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 459 (2003), 1563-1579. doi: 10.1098/rspa.2002.1094.

[6]

A. N. Kolmogorov, I. G. Petrowsky and N. S. Piscounov, Étude de l'équation de la diffusion avec croissance de la quantité de matiére et son application á un probléme biologique, Bull. Univ. d'État á Moscou, Ser. Internat. A, 1 (1937), 1-26.

[7]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity, J. Differential Equations, 247 (2009), 495-510. doi: 10.1016/j.jde.2008.12.026.

[8]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity, J. Differential Equations, 247 (2009), 511-529. doi: 10.1016/j.jde.2008.12.020.

[9]

M. Mei and J. W.-H. So, Stability of strong travelling waves for a non-local time-delayed reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 551-568.

[10]

M. Mei, C. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM J. Math. Anal., 42 (2010), 2762-2790. doi: 10.1137/090776342.

[11]

J. D. Murry, "Mathematical Biology,'' Vols. I and II, Springer-Verlag, New York, 2002.

[12]

A. N. Stokes, On two types of moving front in quasilinear diffusion, Math. Biosci., 31 (1976), 307-315. doi: 10.1016/0025-5564(76)90087-0.

[13]

V. A. Vasiliev, Yu. M. Romanovskii, D. S. Chernavskki and G. Yakhno, "Autowave Processes in Kinetic Systems,'' Reidel, Dorgrecht, 1987.

[14]

P. Weng and X.-Q. Zhao, Spatial dynamics of a nonlocal and delayed population model in a periodic habitat, Discrete and Continuous Dynamical Systems Ser. A, 29 (2011), 343-366. doi: 10.3934/dcds.2011.29.343.

show all references

References:
[1]

N. F. Britton, "Reaction-diffusion Equations and their Applications to Biology,'' Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1986.

[2]

P. C. Fife, "Mathematical Aspect of Reacting and Diffusing Systems,'' Lecture Notes in Biomath., 28, Springer-Verlag, Berlin-New York, 1979.

[3]

P. C. Fife and J. B. Mcleod, The approach solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361. doi: 10.1007/BF00250432.

[4]

A. Friedman, "Partial Differential Equations of Parabolic Type,'' Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.

[5]

S. A. Gourley and Y. Kuang, Wavefront and global stability in a time-delayed population model with stage structure, R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 459 (2003), 1563-1579. doi: 10.1098/rspa.2002.1094.

[6]

A. N. Kolmogorov, I. G. Petrowsky and N. S. Piscounov, Étude de l'équation de la diffusion avec croissance de la quantité de matiére et son application á un probléme biologique, Bull. Univ. d'État á Moscou, Ser. Internat. A, 1 (1937), 1-26.

[7]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity, J. Differential Equations, 247 (2009), 495-510. doi: 10.1016/j.jde.2008.12.026.

[8]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity, J. Differential Equations, 247 (2009), 511-529. doi: 10.1016/j.jde.2008.12.020.

[9]

M. Mei and J. W.-H. So, Stability of strong travelling waves for a non-local time-delayed reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 551-568.

[10]

M. Mei, C. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations, SIAM J. Math. Anal., 42 (2010), 2762-2790. doi: 10.1137/090776342.

[11]

J. D. Murry, "Mathematical Biology,'' Vols. I and II, Springer-Verlag, New York, 2002.

[12]

A. N. Stokes, On two types of moving front in quasilinear diffusion, Math. Biosci., 31 (1976), 307-315. doi: 10.1016/0025-5564(76)90087-0.

[13]

V. A. Vasiliev, Yu. M. Romanovskii, D. S. Chernavskki and G. Yakhno, "Autowave Processes in Kinetic Systems,'' Reidel, Dorgrecht, 1987.

[14]

P. Weng and X.-Q. Zhao, Spatial dynamics of a nonlocal and delayed population model in a periodic habitat, Discrete and Continuous Dynamical Systems Ser. A, 29 (2011), 343-366. doi: 10.3934/dcds.2011.29.343.

[1]

Yicheng Jiang, Kaijun Zhang. Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. Kinetic and Related Models, 2018, 11 (5) : 1235-1253. doi: 10.3934/krm.2018048

[2]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[3]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, 2021, 29 (4) : 2599-2618. doi: 10.3934/era.2021003

[4]

Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526

[5]

Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255

[6]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[7]

Wei-Jie Sheng, Wan-Tong Li. Multidimensional stability of time-periodic planar traveling fronts in bistable reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2681-2704. doi: 10.3934/dcds.2017115

[8]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001

[9]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[10]

Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure and Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141

[11]

Ning Wang, Zhi-Cheng Wang. Propagation dynamics of a nonlocal time-space periodic reaction-diffusion model with delay. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1599-1646. doi: 10.3934/dcds.2021166

[12]

Masaharu Taniguchi. Instability of planar traveling waves in bistable reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 21-44. doi: 10.3934/dcdsb.2003.3.21

[13]

Tianran Zhang. Traveling waves for a reaction-diffusion model with a cyclic structure. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1859-1870. doi: 10.3934/dcdsb.2020006

[14]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[15]

Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

[16]

Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681

[17]

Matthieu Alfaro, Jérôme Coville, Gaël Raoul. Bistable travelling waves for nonlocal reaction diffusion equations. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1775-1791. doi: 10.3934/dcds.2014.34.1775

[18]

Wenjing Wu, Tianli Jiang, Weiwei Liu, Jinliang Wang. Threshold dynamics of a reaction-diffusion cholera model with seasonality and nonlocal delay. Communications on Pure and Applied Analysis, 2022, 21 (10) : 3263-3282. doi: 10.3934/cpaa.2022099

[19]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[20]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (86)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]