May  2012, 17(3): 993-1007. doi: 10.3934/dcdsb.2012.17.993

Global stability and convergence rate of traveling waves for a nonlocal model in periodic media

1. 

School of Mathematics and Physics, University of South China, Hengyang, 421001, China

2. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St.Johns, Newfoundland, A1C 5S7, Canada

Received  May 2011 Revised  August 2011 Published  January 2012

In this paper, we study the stability and convergence rate of traveling wavefronts for a nonlocal population model in a periodic habitat \[ \left\{ \begin{array}{ll} \displaystyle\frac{\partial u(t,x)}{\partial t}=D(x)\frac{\partial ^2u(t,x)}{% \partial x^2}-d(x,u(t,x))+\int_R\Gamma (\tau ,x,y)b(y,u(t-\tau ,y))dy, & \\ u(\theta ,x)=\varphi (\theta ,x),\theta \in [-\tau ,0],& \end{array} \right. \] where $D(x), d(x,\cdot ), b(x,\cdot ), \Gamma (\tau ,x,y)$ are L-periodic functions with respect to space $x$ (and $y$) for some positive real constant $L $. Using the analysis of the principal eigenvalue of a non-local linear operator, we show that all noncritical wavefronts are globally exponentially stable, as long as the initial perturbation is uniformly bounded in a weighted space. This result can be generalized to n-dimensional case and three applications of our main results are also presented.
Citation: Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993
References:
[1]

N. F. Britton, "Reaction-diffusion Equations and their Applications to Biology,'', Academic Press, (1986).   Google Scholar

[2]

P. C. Fife, "Mathematical Aspect of Reacting and Diffusing Systems,'', Lecture Notes in Biomath., 28 (1979).   Google Scholar

[3]

P. C. Fife and J. B. Mcleod, The approach solutions of nonlinear diffusion equations to travelling front solutions,, Arch. Ration. Mech. Anal., 65 (1977), 335.  doi: 10.1007/BF00250432.  Google Scholar

[4]

A. Friedman, "Partial Differential Equations of Parabolic Type,'', Prentice-Hall, (1964).   Google Scholar

[5]

S. A. Gourley and Y. Kuang, Wavefront and global stability in a time-delayed population model with stage structure,, R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 459 (2003), 1563.  doi: 10.1098/rspa.2002.1094.  Google Scholar

[6]

A. N. Kolmogorov, I. G. Petrowsky and N. S. Piscounov, Étude de l'équation de la diffusion avec croissance de la quantité de matiére et son application á un probléme biologique,, Bull. Univ. d'État á Moscou, 1 (1937), 1.   Google Scholar

[7]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity,, J. Differential Equations, 247 (2009), 495.  doi: 10.1016/j.jde.2008.12.026.  Google Scholar

[8]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity,, J. Differential Equations, 247 (2009), 511.  doi: 10.1016/j.jde.2008.12.020.  Google Scholar

[9]

M. Mei and J. W.-H. So, Stability of strong travelling waves for a non-local time-delayed reaction-diffusion equation,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 551.   Google Scholar

[10]

M. Mei, C. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations,, SIAM J. Math. Anal., 42 (2010), 2762.  doi: 10.1137/090776342.  Google Scholar

[11]

J. D. Murry, "Mathematical Biology,'', Vols. I and II, (2002).   Google Scholar

[12]

A. N. Stokes, On two types of moving front in quasilinear diffusion,, Math. Biosci., 31 (1976), 307.  doi: 10.1016/0025-5564(76)90087-0.  Google Scholar

[13]

V. A. Vasiliev, Yu. M. Romanovskii, D. S. Chernavskki and G. Yakhno, "Autowave Processes in Kinetic Systems,'', Reidel, (1987).   Google Scholar

[14]

P. Weng and X.-Q. Zhao, Spatial dynamics of a nonlocal and delayed population model in a periodic habitat,, Discrete and Continuous Dynamical Systems Ser. A, 29 (2011), 343.  doi: 10.3934/dcds.2011.29.343.  Google Scholar

show all references

References:
[1]

N. F. Britton, "Reaction-diffusion Equations and their Applications to Biology,'', Academic Press, (1986).   Google Scholar

[2]

P. C. Fife, "Mathematical Aspect of Reacting and Diffusing Systems,'', Lecture Notes in Biomath., 28 (1979).   Google Scholar

[3]

P. C. Fife and J. B. Mcleod, The approach solutions of nonlinear diffusion equations to travelling front solutions,, Arch. Ration. Mech. Anal., 65 (1977), 335.  doi: 10.1007/BF00250432.  Google Scholar

[4]

A. Friedman, "Partial Differential Equations of Parabolic Type,'', Prentice-Hall, (1964).   Google Scholar

[5]

S. A. Gourley and Y. Kuang, Wavefront and global stability in a time-delayed population model with stage structure,, R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 459 (2003), 1563.  doi: 10.1098/rspa.2002.1094.  Google Scholar

[6]

A. N. Kolmogorov, I. G. Petrowsky and N. S. Piscounov, Étude de l'équation de la diffusion avec croissance de la quantité de matiére et son application á un probléme biologique,, Bull. Univ. d'État á Moscou, 1 (1937), 1.   Google Scholar

[7]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. I. Local nonlinearity,, J. Differential Equations, 247 (2009), 495.  doi: 10.1016/j.jde.2008.12.026.  Google Scholar

[8]

M. Mei, C.-K. Lin, C.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation. II. Nonlocal nonlinearity,, J. Differential Equations, 247 (2009), 511.  doi: 10.1016/j.jde.2008.12.020.  Google Scholar

[9]

M. Mei and J. W.-H. So, Stability of strong travelling waves for a non-local time-delayed reaction-diffusion equation,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 551.   Google Scholar

[10]

M. Mei, C. Ou and X.-Q. Zhao, Global stability of monostable traveling waves for nonlocal time-delayed reaction-diffusion equations,, SIAM J. Math. Anal., 42 (2010), 2762.  doi: 10.1137/090776342.  Google Scholar

[11]

J. D. Murry, "Mathematical Biology,'', Vols. I and II, (2002).   Google Scholar

[12]

A. N. Stokes, On two types of moving front in quasilinear diffusion,, Math. Biosci., 31 (1976), 307.  doi: 10.1016/0025-5564(76)90087-0.  Google Scholar

[13]

V. A. Vasiliev, Yu. M. Romanovskii, D. S. Chernavskki and G. Yakhno, "Autowave Processes in Kinetic Systems,'', Reidel, (1987).   Google Scholar

[14]

P. Weng and X.-Q. Zhao, Spatial dynamics of a nonlocal and delayed population model in a periodic habitat,, Discrete and Continuous Dynamical Systems Ser. A, 29 (2011), 343.  doi: 10.3934/dcds.2011.29.343.  Google Scholar

[1]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[2]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[3]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[4]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[7]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[8]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[9]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[10]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[11]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[12]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[13]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[14]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[15]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[16]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[17]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[18]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[19]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[20]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]