January  2013, 18(1): 1-36. doi: 10.3934/dcdsb.2013.18.1

Second order corrector in the homogenization of a conductive-radiative heat transfer problem

1. 

CMAP, Ecole Polytechnique, 91128 Palaiseau, & DM2S, CEA Saclay, 91191 Gif sur Yvette, France

2. 

DM2S/SFME/LTMF, CEA Saclay, 91191 Gif sur Yvette, & CMAP, Ecole Polytechnique, 91128 Palaiseau, France

Received  March 2012 Revised  July 2012 Published  September 2012

This paper focuses on the contribution of the so-called second order corrector in periodic homogenization applied to a conductive-radiative heat transfer problem. More precisely, heat is diffusing in a periodically perforated domain with a non-local boundary condition modelling the radiative transfer in each hole. If the source term is a periodically oscillating function (which is the case in our application to nuclear reactor physics), a strong gradient of the temperature takes place in each periodicity cell, corresponding to a large heat flux between the sources and the perforations. This effect cannot be taken into account by the homogenized model, neither by the first order corrector. We show that this local gradient effect can be reproduced if the second order corrector is added to the reconstructed solution.
Citation: Grégoire Allaire, Zakaria Habibi. Second order corrector in the homogenization of a conductive-radiative heat transfer problem. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 1-36. doi: 10.3934/dcdsb.2013.18.1
References:
[1]

G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math. Anal., 23 (1992), 1482.   Google Scholar

[2]

G. Allaire and M. Amar, Boundary layer tails in periodic homogenization,, ESAIM Control Optim. Calc. Var., 4 (1999), 209.   Google Scholar

[3]

G. Allaire and K. El Ganaoui, Homogenization of a conductive and radiative heat transfer problem,, Multiscale Model. Simul., 7 (2008), 1148.   Google Scholar

[4]

G. Allaire and Z. Habibi, "Homogenization of a Conductive, Convective and Radiative Heat Transfer Problem,", submitted. Internal report, (2012).   Google Scholar

[5]

A. A. Amosov, Stationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on radiation frequency,, J. Math. Sci., 164 (2010), 309.   Google Scholar

[6]

N. Bakhvalov and G. Panasenko, "Homogenisation: Averaging Processes in Periodic Media,", vol. 36 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, (1989).   Google Scholar

[7]

A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic analysis for periodic structures,", vol. 5 of Studies in Mathematics and its Applications. North-Holland Publishing Co., (1978).   Google Scholar

[8]

J. F. Bourgat, "Numerical Experiments of the Homogenization Method for Operators with Periodic Coefficients,", Computing methods in applied sciences and engineering (Proc. Third Internat. Sympos., (1977), 330.   Google Scholar

[9]

J. F. Bourgat and A. Dervieux, "Méthode D'homogénéisation des Opérateurs à Coefficients Périodiques: Étude des Correcteurs Provenant du Développement Asymptotique,", IRIA-LABORIA, (1978).   Google Scholar

[10]

S. Boyaval, Reduced-bases approach for homogenization beyond the periodic setting,, Multiscale Model. Simul., 7 (2008), 466.   Google Scholar

[11]

J. Casado-Diaz, The asymptotic behaviour near the boundary of periodic homogenization problems via two-scale convergence,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 33.   Google Scholar

[12]

, Cast3M., Available from: , ().   Google Scholar

[13]

S. Chandrasekhar, "Radiative Transfer,", Dover Publications Inc., (1960).   Google Scholar

[14]

K. Cherednichenko and V. Smyshlyaev, On full two-scale expansion of the solutions of nonlinear periodic rapidly oscillating problems and higher-order homogenised variational problems,, Arch. Ration. Mech. Anal., 174 (2004), 385.   Google Scholar

[15]

D. Cioranescu and P. Donato, "An Introduction to Homogenization,", vol. 17 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, (1999).   Google Scholar

[16]

CEA e-den, "Les réacteurs Nucléaires à Caloporteur Gaz,", CEA Saclay et Le Moniteur Editions. Monographie Den, (2006).   Google Scholar

[17]

C. Conca, R. Orive and M. Vanninathan, First and second corrector in homogenization by Bloch waves,, Bol. Soc. Esp. Mat. Apl. S$\vec{\ e}$MA, (2008), 61.   Google Scholar

[18]

D. Gérard-Varet and N. Masmoudi, Homogenization in polygonal domains,, J. Eur. Math. Soc., 13 (2011), 1477.   Google Scholar

[19]

D. Gérard-Varet and N. Masmoudi, Homogenization and boundary layer,, to appear in Acta Mathematica., ().   Google Scholar

[20]

G. Griso, Interior error estimate for periodic homogenization,, Anal. Appl. (Singap.), 4 (2006), 61.   Google Scholar

[21]

Z. Habibi, Homogenization of a conductive-radiative heat transfer problem, the contribution of a second order corrector,, ESAIM: Proc. Volume 35, (): 228.   Google Scholar

[22]

Z. Habibi, Homogénéisation et convergence à deux échelles lors d'échanges thermiques stationnaires et transitoires dans un cœur de réacteur à caloporteur gaz,, PhD thesis, (2011).   Google Scholar

[23]

P. S. Heckbert., "Simulating Global Illumination Using Adaptive Meshing,", PhD thesis, (1991).   Google Scholar

[24]

V. H. Hoang and Ch. Schwab, High-dimensional finite elements for elliptic problems with multiple scales,, Multiscale Model. Simul. 3 (2004/05), 3 (): 168.   Google Scholar

[25]

U. Hornung, "Homogenization and Porous Media,", vol. 6 of, (1997).   Google Scholar

[26]

J. R. Howell, "A Catalogue of Radiation Heat Transfer Factors,", The university of Texas at Austin, (2010).   Google Scholar

[27]

V. V. Jikov, S. M. Kozlov and O. A. Oleinik, "Homogenization of Differential Operators and Integral Functionals,", Springer Verlag, (1994).   Google Scholar

[28]

C. Kenig, F. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems,, Arch. Ration. Mech. Anal. 203 (2012), 203 (2012), 1009.   Google Scholar

[29]

M. Laitinen and T. Tiihonen, Conductive-radiative heat transfer in grey materials,, Quart. Appl. Math., 59 (2001), 737.   Google Scholar

[30]

J. L. Lions, "Some Methods in the Mathematical Analysis of Systems and Their Control,", Kexue Chubanshe (Science Press), (1981).   Google Scholar

[31]

Y. Maday, A. T. Patera and G. Turinici, Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations,, C. R. Math. Acad. Sci. Paris, 335 (2002), 289.   Google Scholar

[32]

F. M. Modest, "Radiative Heat Transfer,", Academic Press, (2003).   Google Scholar

[33]

S. Moskow and M. Vogelius, First-order corrections to the homogenised eigenvalues of aperiodic composite medium. A convergence proof,, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1263.   Google Scholar

[34]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization,, SIAM J. Math. Anal., 20 (1989), 608.   Google Scholar

[35]

D. Onofrei and B. Vernescu, Error estimates for periodic homogenization with non-smooth coefficients,, Asymptot. Anal., 54 (2007), 103.   Google Scholar

[36]

E. Sanchez-Palencia, "Nonhomogeneous Media and Vibration Theory,", vol. 127 of Lecture Notes in Physics, (1980).   Google Scholar

[37]

L. Tartar, "The General Theory of Homogenization. A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana,", Springer Verlag, (2009).   Google Scholar

[38]

T. Tiihonen, Stefan-boltzman radiation on non-convex surfaces,, Math. Methods Appl. Sci., 20 (1997), 47.   Google Scholar

[39]

T. Tiihonen, Finite element approximation of nonlocal heat radiation problems,, Math. Models Methods Appl. Sci., 8 (1998), 1071.   Google Scholar

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence,, SIAM J. Math. Anal., 23 (1992), 1482.   Google Scholar

[2]

G. Allaire and M. Amar, Boundary layer tails in periodic homogenization,, ESAIM Control Optim. Calc. Var., 4 (1999), 209.   Google Scholar

[3]

G. Allaire and K. El Ganaoui, Homogenization of a conductive and radiative heat transfer problem,, Multiscale Model. Simul., 7 (2008), 1148.   Google Scholar

[4]

G. Allaire and Z. Habibi, "Homogenization of a Conductive, Convective and Radiative Heat Transfer Problem,", submitted. Internal report, (2012).   Google Scholar

[5]

A. A. Amosov, Stationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on radiation frequency,, J. Math. Sci., 164 (2010), 309.   Google Scholar

[6]

N. Bakhvalov and G. Panasenko, "Homogenisation: Averaging Processes in Periodic Media,", vol. 36 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, (1989).   Google Scholar

[7]

A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic analysis for periodic structures,", vol. 5 of Studies in Mathematics and its Applications. North-Holland Publishing Co., (1978).   Google Scholar

[8]

J. F. Bourgat, "Numerical Experiments of the Homogenization Method for Operators with Periodic Coefficients,", Computing methods in applied sciences and engineering (Proc. Third Internat. Sympos., (1977), 330.   Google Scholar

[9]

J. F. Bourgat and A. Dervieux, "Méthode D'homogénéisation des Opérateurs à Coefficients Périodiques: Étude des Correcteurs Provenant du Développement Asymptotique,", IRIA-LABORIA, (1978).   Google Scholar

[10]

S. Boyaval, Reduced-bases approach for homogenization beyond the periodic setting,, Multiscale Model. Simul., 7 (2008), 466.   Google Scholar

[11]

J. Casado-Diaz, The asymptotic behaviour near the boundary of periodic homogenization problems via two-scale convergence,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 33.   Google Scholar

[12]

, Cast3M., Available from: , ().   Google Scholar

[13]

S. Chandrasekhar, "Radiative Transfer,", Dover Publications Inc., (1960).   Google Scholar

[14]

K. Cherednichenko and V. Smyshlyaev, On full two-scale expansion of the solutions of nonlinear periodic rapidly oscillating problems and higher-order homogenised variational problems,, Arch. Ration. Mech. Anal., 174 (2004), 385.   Google Scholar

[15]

D. Cioranescu and P. Donato, "An Introduction to Homogenization,", vol. 17 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, (1999).   Google Scholar

[16]

CEA e-den, "Les réacteurs Nucléaires à Caloporteur Gaz,", CEA Saclay et Le Moniteur Editions. Monographie Den, (2006).   Google Scholar

[17]

C. Conca, R. Orive and M. Vanninathan, First and second corrector in homogenization by Bloch waves,, Bol. Soc. Esp. Mat. Apl. S$\vec{\ e}$MA, (2008), 61.   Google Scholar

[18]

D. Gérard-Varet and N. Masmoudi, Homogenization in polygonal domains,, J. Eur. Math. Soc., 13 (2011), 1477.   Google Scholar

[19]

D. Gérard-Varet and N. Masmoudi, Homogenization and boundary layer,, to appear in Acta Mathematica., ().   Google Scholar

[20]

G. Griso, Interior error estimate for periodic homogenization,, Anal. Appl. (Singap.), 4 (2006), 61.   Google Scholar

[21]

Z. Habibi, Homogenization of a conductive-radiative heat transfer problem, the contribution of a second order corrector,, ESAIM: Proc. Volume 35, (): 228.   Google Scholar

[22]

Z. Habibi, Homogénéisation et convergence à deux échelles lors d'échanges thermiques stationnaires et transitoires dans un cœur de réacteur à caloporteur gaz,, PhD thesis, (2011).   Google Scholar

[23]

P. S. Heckbert., "Simulating Global Illumination Using Adaptive Meshing,", PhD thesis, (1991).   Google Scholar

[24]

V. H. Hoang and Ch. Schwab, High-dimensional finite elements for elliptic problems with multiple scales,, Multiscale Model. Simul. 3 (2004/05), 3 (): 168.   Google Scholar

[25]

U. Hornung, "Homogenization and Porous Media,", vol. 6 of, (1997).   Google Scholar

[26]

J. R. Howell, "A Catalogue of Radiation Heat Transfer Factors,", The university of Texas at Austin, (2010).   Google Scholar

[27]

V. V. Jikov, S. M. Kozlov and O. A. Oleinik, "Homogenization of Differential Operators and Integral Functionals,", Springer Verlag, (1994).   Google Scholar

[28]

C. Kenig, F. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems,, Arch. Ration. Mech. Anal. 203 (2012), 203 (2012), 1009.   Google Scholar

[29]

M. Laitinen and T. Tiihonen, Conductive-radiative heat transfer in grey materials,, Quart. Appl. Math., 59 (2001), 737.   Google Scholar

[30]

J. L. Lions, "Some Methods in the Mathematical Analysis of Systems and Their Control,", Kexue Chubanshe (Science Press), (1981).   Google Scholar

[31]

Y. Maday, A. T. Patera and G. Turinici, Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations,, C. R. Math. Acad. Sci. Paris, 335 (2002), 289.   Google Scholar

[32]

F. M. Modest, "Radiative Heat Transfer,", Academic Press, (2003).   Google Scholar

[33]

S. Moskow and M. Vogelius, First-order corrections to the homogenised eigenvalues of aperiodic composite medium. A convergence proof,, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1263.   Google Scholar

[34]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization,, SIAM J. Math. Anal., 20 (1989), 608.   Google Scholar

[35]

D. Onofrei and B. Vernescu, Error estimates for periodic homogenization with non-smooth coefficients,, Asymptot. Anal., 54 (2007), 103.   Google Scholar

[36]

E. Sanchez-Palencia, "Nonhomogeneous Media and Vibration Theory,", vol. 127 of Lecture Notes in Physics, (1980).   Google Scholar

[37]

L. Tartar, "The General Theory of Homogenization. A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana,", Springer Verlag, (2009).   Google Scholar

[38]

T. Tiihonen, Stefan-boltzman radiation on non-convex surfaces,, Math. Methods Appl. Sci., 20 (1997), 47.   Google Scholar

[39]

T. Tiihonen, Finite element approximation of nonlocal heat radiation problems,, Math. Models Methods Appl. Sci., 8 (1998), 1071.   Google Scholar

[1]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[2]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[3]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[4]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[5]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[6]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[7]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]