-
Previous Article
Optimal controls for a mathematical model of tumor-immune interactions under targeted chemotherapy with immune boost
- DCDS-B Home
- This Issue
-
Next Article
A hybrid model for cell proliferation and migration in glioblastoma
A mathematical model for the immunotherapeutic control of the Th1/Th2 imbalance in melanoma
1. | 10 Hate'ena St., P.O.B. 282, Bene Ataroth 60991, Israel, Israel, Israel |
References:
[1] |
J. M. Kirkwood, A. A. Tarhini, M. C. Panelli, S. J. Moschos, H. M. Zarour, L. H. Butterfield and H. J. Gogas, Next generation of immunotherapy for melanoma, J. Clin. Oncol., 26 (2008), 3445-3455. |
[2] |
G. P. Dunn, A. T. Bruce, H. Ikeda, L. J. Old and R. D. Schreiber, Cancer immunoediting: From immunosurveillance to tumor escape, Nat. Immunol., 3 (2002), 991-998. |
[3] |
W. H. Fridman, F. Pages, C. Sautes-Fridman and J. Galon, The immune contexture in human tumours: impact on clinical outcome, Nat. Rev. Cancer, 12 (2012), 298-306. |
[4] |
A. J. Cochran, R. R. Huang, J. Lee, E. Itakura, S. P. L. Leong and R. Essner, Tumour-induced immune modulation of sentinel lymph nodes, Nat. Rev. Immunol., 6(9) (2006), 659-670. |
[5] |
L. Lauerova, L. Dusek, M. Simickova, I. Kocak, M. Vagundova, J. Zaloudik and J. Kovarik, Malignant melanoma associates with Th1/Th2 imbalance that coincides with disease progression and immunotherapy response, Neoplasma, 49 (2002), 159-166. |
[6] |
R. Botella-Estrada, M. Escudero, J. E. O'Connor, E. Nagore, B. Fenollosa, O. Sanmartin, C. Requena and C. Guillen, Cytokine production by peripheral lymphocytes in melanoma, Eur. Cytokine Netw., 16 (2005), 47-55. |
[7] |
W. K. Nevala, C. M. Vachon, A. A. Leontovich, C. G. Scott, M. A. Thompson and S. N. Markovic, Evidence of systemic Th2-driven chronic inflammation in patients with metastatic melanoma, Clin. Cancer Res., 15 (2009), 1931-1939. |
[8] |
W. Dummer, J. C. Becker, A. Schwaaf, M. Leverkus, T. Moll and E. B. Brocker, Elevated serum levels of interleukin-10 in patients with metastatic malignant melanoma, Melanoma Res., 5 (1995), 67-68. |
[9] |
A. M. Lana, D. R. Wen and A. J.Cochran, The morphology, immunophenotype and distribution of paracortical dendritic leucocytes in lymph nodes regional to cutaneous melanoma, Melanoma Res., 11 (2001), 401-410. |
[10] |
R. Botella-Estrada, F. Dasi, D. Ramos, E. Nagore, M. J. Herrero, J. Gimenez, C. Fuster, O. Sanmartin, C. Guillen and S. Alino, Cytokine expression and dendritic cell density in melanoma sentinel nodes, Melanoma Res., 15 (2005), 99-106. |
[11] |
J. H. Lee, H. Torisu-Itakara, A. J. Cochran, A. Kadison, Y. Huynh, D. L. Morton and R. Essner, Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes, Clin. Cancer Res., 11 (2005), 107-112. |
[12] |
T. Tatsumi, L. S. Kierstead, E. Ranieri, L. Gesualdo, F. P. Schena, J. H. Finke, R. M. Bukowski, J. Mueller-Berghaus, J. M. Kirkwood, W. W. Kwok and W. J. Storkus, Disease-associated bias in T helper type 1 (Th1)/Th2 CD4+ T cell responses against MAGE-6 in HLA-DRB10401+ patients with renal cell carcinoma or melanoma, J. Experimental Medicine, 196 (2002), 619-628. |
[13] |
D. D. Kharkevitch, D. Seito, G. C. Balch, T. Maeda, C. M. Balch and K. Itoh, Characterization of autologous tumor-specific T-helper 2 cells in tumor-infiltrating lymphocytes from a patient with metastatic melanoma, Int. J. Cancer, 58 (1994), 317-323. |
[14] |
G. Trinchieri, Interleukin-12: A proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity, Annu. Rev. Immunol., 13 (1995), 251-276. |
[15] |
M. P. Colombo and G. Trinchieri, Interleukin-12 in anti-tumor immunity and immunotherapy, Cytokine Growth Factor Rev., 13 (2002), 155-168. |
[16] |
G. Trinchieri, Interleukin-12 and the regulation of innate resistance and adaptive immunity, Nat. Rev. Immunol., 3 (2003), 133-146. |
[17] |
M. Del Vecchio, E. Bajetta, S. Canova, M. T. Lotze, A. Wesa, G. Parmiani and A. Anichini, Interleukin-12: biological properties and clinical application, Clin. Cancer Res., 13 (2007), 4677-4685. |
[18] |
M. A. Cheever, Twelve immunotherapy drugs that could cure cancers, Immunol. Rev., 222 (2008), 357-368. |
[19] |
Z. Agur, From the evolution of toxin resistance to virtual clinical trials: The role of mathematical models in oncology, Future Oncol., 6 (2010), 917-927. |
[20] |
R. Eftimie, J. L. Bramson and D. J. Earn, Interactions between the immune system and cancer: A brief review of non-spatial mathematical models, Bull. Math. Biol., 73 (2011), 2-32.
doi: 10.1007/s11538-010-9526-3. |
[21] |
D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol., 37 (1998), 235-252. |
[22] |
F. Nani and H. I. Freedman, A mathematical model of cancer treatment by immunotherapy, Math. Biosci., 163 (2000), 159-199.
doi: 10.1016/S0025-5564(99)00058-9. |
[23] |
L. G. de Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: Modeling, applications and biological interpretations, J. Theor. Biol., 238 (2006), 841-862.
doi: 10.1016/j.jtbi.2005.06.037. |
[24] |
A. Cappuccio, M. Elishmereni and Z. Agur, Cancer immunotherapy by interleukin-21: Potential treatment strategies evaluated in a mathematical model, Cancer Res, 66 (2006), 7293-7300. |
[25] |
A. Cappuccio, M. Elishmereni and Z. Agur, Optimization of interleukin-21 immunotherapeutic strategies, J. Theor. Biol., 248 (2007), 259-266.
doi: 10.1016/j.jtbi.2007.05.015. |
[26] |
M. Elishmereni, Y. Kheifetz, H. Sondergaard, R. V. Overgaard and Z. Agur, An integrated disease/pharmacokinetic/pharmacodynamic model suggests improved interleukin-21 regimens validated prospectively for mouse solid cancers, PLoS Comput. Biol., 7 (2011), e1002206. |
[27] |
N. Kronik, Y. Kogan, V. Vainstein and Z. Agur, Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics, Cancer Immunol. Immunother., 57 (2008), 425-439. |
[28] |
N. Kronik, Y. Kogan, M. Elishmereni, K. Halevi-Tobias, S. Vuk-Pavlovic and Z. Agur, Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models, PLoS One, 5 (2010), e15482. |
[29] |
Y. Kogan, K. Halevi-Tobias, M. Elishmereni, S. Vuk-Pavlovic and Z. Agur, Reconsidering the paradigm of cancer immunotherapy by computationally aided real-time personalization, Cancer Res., 72 (2012), 2218-2227. |
[30] |
E. Jager, V. H. van der Velden, J. G. te Marvelde, R. B. Walter, Z. Agur and V. Vainstein, Targeted drug delivery by gemtuzumab ozogamicin: mechanism-based mathematical model for treatment strategy improvement and therapy individualization, PLoS One, 6 (2011), e24265. |
[31] |
Z. Agur and S. Vuk-Pavlovic, Mathematical modeling in immunotherapy of cancer: Personalizing clinical trials, Mol. Ther., 20 (2012), 1-2. |
[32] |
F. Castiglione and B. Piccoli, Cancer immunotherapy, mathematical modeling and optimal control, J. Theor. Biol., 247 (2007), 723-732.
doi: 10.1016/j.jtbi.2007.04.003. |
[33] |
L. G. de Pillis, A. E. Radunskaya and C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res., 65 (2005), 7950-7958. |
[34] |
M. A. Fishman and A. S. Perelson, Th1/Th2 cross regulation, J. Theor. Biol., 170 (1994), 25-56. |
[35] |
M. A. Fishman and L. A. Segel, Modeling immunotherapy for allergy, Bull. Math. Biol., 58 (1996), 1099-1121. |
[36] |
M. A. Fishman and A. S. Perelson, Th1/Th2 differentiation and cross-regulation, Bull. Math. Biol., 61 (1999), 403-436. |
[37] |
A. Yates, C. Bergmann, J. L. Van Hemmen, J. Stark and R. Callard, Cytokine-modulated regulation of helper T cell populations, J. Theor. Biol., 206 (2000), 539-560. |
[38] |
C. Bergmann, J. L. Van Hemmen and L. A.Segel, Th1 or Th2: How an appropriate T helper response can be made, Bull. Math. Biol., 63 (2001), 405-430. |
[39] |
A. Yates, R. Callard and J. Stark, Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: a model for cellular decision-making, J. Theor. Biol., 231 (2004), 181-196.
doi: 10.1016/j.jtbi.2004.06.013. |
[40] |
R. E. Callard, Decision-making by the immune response, Immunol. Cell Biol., 85 (2007), 300-305. |
[41] |
F. Gross, G. Metzner and U. Behn, Mathematical modeling of allergy and specific immunotherapy: Th1-Th2-Treg interactions, J. Theor. Biol., 269 (2011), 70-78. |
[42] |
M. L. Disis, Immunologic biomarkers as correlates of clinical response to cancer immunotherapy, Cancer Immunol. Immunother., 60 (2011), 433-442. |
[43] |
J. P. Leonard, M. L. Sherman, G. L. Fisher, L. J. Buchanan, G. Larsen, M. B. Atkins, J. A. Sosman, J. P. Dutcher, N. J. Vogelzang and J. L. Ryan, Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production, Blood, 90 (1997), 2541-2548. |
[44] |
J. M. Weiss, J. J. Subleski, J. M. Wigginton, R. H. Wiltrout, Immunotherapy of cancer by IL-12-based cytokine combinations, Expert Opin. Biol. Ther., 7 (2007), 1705-1721. |
show all references
References:
[1] |
J. M. Kirkwood, A. A. Tarhini, M. C. Panelli, S. J. Moschos, H. M. Zarour, L. H. Butterfield and H. J. Gogas, Next generation of immunotherapy for melanoma, J. Clin. Oncol., 26 (2008), 3445-3455. |
[2] |
G. P. Dunn, A. T. Bruce, H. Ikeda, L. J. Old and R. D. Schreiber, Cancer immunoediting: From immunosurveillance to tumor escape, Nat. Immunol., 3 (2002), 991-998. |
[3] |
W. H. Fridman, F. Pages, C. Sautes-Fridman and J. Galon, The immune contexture in human tumours: impact on clinical outcome, Nat. Rev. Cancer, 12 (2012), 298-306. |
[4] |
A. J. Cochran, R. R. Huang, J. Lee, E. Itakura, S. P. L. Leong and R. Essner, Tumour-induced immune modulation of sentinel lymph nodes, Nat. Rev. Immunol., 6(9) (2006), 659-670. |
[5] |
L. Lauerova, L. Dusek, M. Simickova, I. Kocak, M. Vagundova, J. Zaloudik and J. Kovarik, Malignant melanoma associates with Th1/Th2 imbalance that coincides with disease progression and immunotherapy response, Neoplasma, 49 (2002), 159-166. |
[6] |
R. Botella-Estrada, M. Escudero, J. E. O'Connor, E. Nagore, B. Fenollosa, O. Sanmartin, C. Requena and C. Guillen, Cytokine production by peripheral lymphocytes in melanoma, Eur. Cytokine Netw., 16 (2005), 47-55. |
[7] |
W. K. Nevala, C. M. Vachon, A. A. Leontovich, C. G. Scott, M. A. Thompson and S. N. Markovic, Evidence of systemic Th2-driven chronic inflammation in patients with metastatic melanoma, Clin. Cancer Res., 15 (2009), 1931-1939. |
[8] |
W. Dummer, J. C. Becker, A. Schwaaf, M. Leverkus, T. Moll and E. B. Brocker, Elevated serum levels of interleukin-10 in patients with metastatic malignant melanoma, Melanoma Res., 5 (1995), 67-68. |
[9] |
A. M. Lana, D. R. Wen and A. J.Cochran, The morphology, immunophenotype and distribution of paracortical dendritic leucocytes in lymph nodes regional to cutaneous melanoma, Melanoma Res., 11 (2001), 401-410. |
[10] |
R. Botella-Estrada, F. Dasi, D. Ramos, E. Nagore, M. J. Herrero, J. Gimenez, C. Fuster, O. Sanmartin, C. Guillen and S. Alino, Cytokine expression and dendritic cell density in melanoma sentinel nodes, Melanoma Res., 15 (2005), 99-106. |
[11] |
J. H. Lee, H. Torisu-Itakara, A. J. Cochran, A. Kadison, Y. Huynh, D. L. Morton and R. Essner, Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes, Clin. Cancer Res., 11 (2005), 107-112. |
[12] |
T. Tatsumi, L. S. Kierstead, E. Ranieri, L. Gesualdo, F. P. Schena, J. H. Finke, R. M. Bukowski, J. Mueller-Berghaus, J. M. Kirkwood, W. W. Kwok and W. J. Storkus, Disease-associated bias in T helper type 1 (Th1)/Th2 CD4+ T cell responses against MAGE-6 in HLA-DRB10401+ patients with renal cell carcinoma or melanoma, J. Experimental Medicine, 196 (2002), 619-628. |
[13] |
D. D. Kharkevitch, D. Seito, G. C. Balch, T. Maeda, C. M. Balch and K. Itoh, Characterization of autologous tumor-specific T-helper 2 cells in tumor-infiltrating lymphocytes from a patient with metastatic melanoma, Int. J. Cancer, 58 (1994), 317-323. |
[14] |
G. Trinchieri, Interleukin-12: A proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity, Annu. Rev. Immunol., 13 (1995), 251-276. |
[15] |
M. P. Colombo and G. Trinchieri, Interleukin-12 in anti-tumor immunity and immunotherapy, Cytokine Growth Factor Rev., 13 (2002), 155-168. |
[16] |
G. Trinchieri, Interleukin-12 and the regulation of innate resistance and adaptive immunity, Nat. Rev. Immunol., 3 (2003), 133-146. |
[17] |
M. Del Vecchio, E. Bajetta, S. Canova, M. T. Lotze, A. Wesa, G. Parmiani and A. Anichini, Interleukin-12: biological properties and clinical application, Clin. Cancer Res., 13 (2007), 4677-4685. |
[18] |
M. A. Cheever, Twelve immunotherapy drugs that could cure cancers, Immunol. Rev., 222 (2008), 357-368. |
[19] |
Z. Agur, From the evolution of toxin resistance to virtual clinical trials: The role of mathematical models in oncology, Future Oncol., 6 (2010), 917-927. |
[20] |
R. Eftimie, J. L. Bramson and D. J. Earn, Interactions between the immune system and cancer: A brief review of non-spatial mathematical models, Bull. Math. Biol., 73 (2011), 2-32.
doi: 10.1007/s11538-010-9526-3. |
[21] |
D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol., 37 (1998), 235-252. |
[22] |
F. Nani and H. I. Freedman, A mathematical model of cancer treatment by immunotherapy, Math. Biosci., 163 (2000), 159-199.
doi: 10.1016/S0025-5564(99)00058-9. |
[23] |
L. G. de Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: Modeling, applications and biological interpretations, J. Theor. Biol., 238 (2006), 841-862.
doi: 10.1016/j.jtbi.2005.06.037. |
[24] |
A. Cappuccio, M. Elishmereni and Z. Agur, Cancer immunotherapy by interleukin-21: Potential treatment strategies evaluated in a mathematical model, Cancer Res, 66 (2006), 7293-7300. |
[25] |
A. Cappuccio, M. Elishmereni and Z. Agur, Optimization of interleukin-21 immunotherapeutic strategies, J. Theor. Biol., 248 (2007), 259-266.
doi: 10.1016/j.jtbi.2007.05.015. |
[26] |
M. Elishmereni, Y. Kheifetz, H. Sondergaard, R. V. Overgaard and Z. Agur, An integrated disease/pharmacokinetic/pharmacodynamic model suggests improved interleukin-21 regimens validated prospectively for mouse solid cancers, PLoS Comput. Biol., 7 (2011), e1002206. |
[27] |
N. Kronik, Y. Kogan, V. Vainstein and Z. Agur, Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics, Cancer Immunol. Immunother., 57 (2008), 425-439. |
[28] |
N. Kronik, Y. Kogan, M. Elishmereni, K. Halevi-Tobias, S. Vuk-Pavlovic and Z. Agur, Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models, PLoS One, 5 (2010), e15482. |
[29] |
Y. Kogan, K. Halevi-Tobias, M. Elishmereni, S. Vuk-Pavlovic and Z. Agur, Reconsidering the paradigm of cancer immunotherapy by computationally aided real-time personalization, Cancer Res., 72 (2012), 2218-2227. |
[30] |
E. Jager, V. H. van der Velden, J. G. te Marvelde, R. B. Walter, Z. Agur and V. Vainstein, Targeted drug delivery by gemtuzumab ozogamicin: mechanism-based mathematical model for treatment strategy improvement and therapy individualization, PLoS One, 6 (2011), e24265. |
[31] |
Z. Agur and S. Vuk-Pavlovic, Mathematical modeling in immunotherapy of cancer: Personalizing clinical trials, Mol. Ther., 20 (2012), 1-2. |
[32] |
F. Castiglione and B. Piccoli, Cancer immunotherapy, mathematical modeling and optimal control, J. Theor. Biol., 247 (2007), 723-732.
doi: 10.1016/j.jtbi.2007.04.003. |
[33] |
L. G. de Pillis, A. E. Radunskaya and C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res., 65 (2005), 7950-7958. |
[34] |
M. A. Fishman and A. S. Perelson, Th1/Th2 cross regulation, J. Theor. Biol., 170 (1994), 25-56. |
[35] |
M. A. Fishman and L. A. Segel, Modeling immunotherapy for allergy, Bull. Math. Biol., 58 (1996), 1099-1121. |
[36] |
M. A. Fishman and A. S. Perelson, Th1/Th2 differentiation and cross-regulation, Bull. Math. Biol., 61 (1999), 403-436. |
[37] |
A. Yates, C. Bergmann, J. L. Van Hemmen, J. Stark and R. Callard, Cytokine-modulated regulation of helper T cell populations, J. Theor. Biol., 206 (2000), 539-560. |
[38] |
C. Bergmann, J. L. Van Hemmen and L. A.Segel, Th1 or Th2: How an appropriate T helper response can be made, Bull. Math. Biol., 63 (2001), 405-430. |
[39] |
A. Yates, R. Callard and J. Stark, Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: a model for cellular decision-making, J. Theor. Biol., 231 (2004), 181-196.
doi: 10.1016/j.jtbi.2004.06.013. |
[40] |
R. E. Callard, Decision-making by the immune response, Immunol. Cell Biol., 85 (2007), 300-305. |
[41] |
F. Gross, G. Metzner and U. Behn, Mathematical modeling of allergy and specific immunotherapy: Th1-Th2-Treg interactions, J. Theor. Biol., 269 (2011), 70-78. |
[42] |
M. L. Disis, Immunologic biomarkers as correlates of clinical response to cancer immunotherapy, Cancer Immunol. Immunother., 60 (2011), 433-442. |
[43] |
J. P. Leonard, M. L. Sherman, G. L. Fisher, L. J. Buchanan, G. Larsen, M. B. Atkins, J. A. Sosman, J. P. Dutcher, N. J. Vogelzang and J. L. Ryan, Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production, Blood, 90 (1997), 2541-2548. |
[44] |
J. M. Weiss, J. J. Subleski, J. M. Wigginton, R. H. Wiltrout, Immunotherapy of cancer by IL-12-based cytokine combinations, Expert Opin. Biol. Ther., 7 (2007), 1705-1721. |
[1] |
Dan Liu, Shigui Ruan, Deming Zhu. Bifurcation analysis in models of tumor and immune system interactions. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 151-168. doi: 10.3934/dcdsb.2009.12.151 |
[2] |
Andrzej Swierniak, Jaroslaw Smieja. Analysis and Optimization of Drug Resistant an Phase-Specific Cancer. Mathematical Biosciences & Engineering, 2005, 2 (3) : 657-670. doi: 10.3934/mbe.2005.2.657 |
[3] |
Urszula Foryś, Jan Poleszczuk. A delay-differential equation model of HIV related cancer--immune system dynamics. Mathematical Biosciences & Engineering, 2011, 8 (2) : 627-641. doi: 10.3934/mbe.2011.8.627 |
[4] |
Dan Liu, Shigui Ruan, Deming Zhu. Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions. Mathematical Biosciences & Engineering, 2012, 9 (2) : 347-368. doi: 10.3934/mbe.2012.9.347 |
[5] |
Andrey Yu. Verisokin, Darya V. Verveyko, Eugene B. Postnikov, Anastasia I. Lavrova. Wavelet analysis of phase clusters in a distributed biochemical system. Conference Publications, 2011, 2011 (Special) : 1404-1412. doi: 10.3934/proc.2011.2011.1404 |
[6] |
Yuzo Hosono. Phase plane analysis of travelling waves for higher order autocatalytic reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 115-125. doi: 10.3934/dcdsb.2007.8.115 |
[7] |
Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079 |
[8] |
Ruyuan Zhang. Hopf bifurcations of ODE systems along the singular direction in the parameter plane. Communications on Pure and Applied Analysis, 2005, 4 (2) : 445-461. doi: 10.3934/cpaa.2005.4.445 |
[9] |
Mihaela Negreanu, J. Ignacio Tello. On a Parabolic-ODE system of chemotaxis. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 279-292. doi: 10.3934/dcdss.2020016 |
[10] |
Martina Conte, Maria Groppi, Giampiero Spiga. Qualitative analysis of kinetic-based models for tumor-immune system interaction. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2393-2414. doi: 10.3934/dcdsb.2018060 |
[11] |
Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5227-5249. doi: 10.3934/dcdsb.2020341 |
[12] |
Marcello Delitala, Tommaso Lorenzi. Recognition and learning in a mathematical model for immune response against cancer. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 891-914. doi: 10.3934/dcdsb.2013.18.891 |
[13] |
Giacomo Canevari, Pierluigi Colli. Solvability and asymptotic analysis of a generalization of the Caginalp phase field system. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1959-1982. doi: 10.3934/cpaa.2012.11.1959 |
[14] |
Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations and Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83 |
[15] |
Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations and Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59 |
[16] |
Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443 |
[17] |
Corrado Mascia. Stability analysis for linear heat conduction with memory kernels described by Gamma functions. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3569-3584. doi: 10.3934/dcds.2015.35.3569 |
[18] |
Amina Eladdadi, Noura Yousfi, Abdessamad Tridane. Preface: Special issue on cancer modeling, analysis and control. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : i-iii. doi: 10.3934/dcdsb.2013.18.4i |
[19] |
Jianhong Wu, Weiguang Yao, Huaiping Zhu. Immune system memory realization in a population model. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 241-259. doi: 10.3934/dcdsb.2007.8.241 |
[20] |
Mika Yoshida, Kinji Fuchikami, Tatsuya Uezu. Realization of immune response features by dynamical system models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 531-552. doi: 10.3934/mbe.2007.4.531 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]