
Previous Article
B cell chronic lymphocytic leukemia  A model with immune response
 DCDSB Home
 This Issue

Next Article
A mathematical model for the immunotherapeutic control of the Th1/Th2 imbalance in melanoma
Optimal controls for a mathematical model of tumorimmune interactions under targeted chemotherapy with immune boost
1.  Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 620261653, United States 
2.  Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, 631304899 
References:
[1] 
D. J. Bell and D. H. Jacobson, "Singular Optimal Control Problems," Academic Press, 1975. 
[2] 
D. A. Benson, "A Gauss Pseudospectral Transcription for Optimal Control," Ph.D. thesis, MIT, 2004. 
[3] 
D. A. Benson, G. T. Huntington, T. P. Thorvaldsen and A. V. Rao, Direct trajectory optimization and costate estimation via an orthogonal collocation method, J. of Guidance, Control, and Dynamics, 29 (2006), 14351440. 
[4] 
B. Bonnard and M. Chyba, "Singular Trajectories and their Role in Control Theory," Springer Verlag, Series: Mathematics and Applications, Vol. 40, 2003. 
[5] 
A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control," American Institute of Mathematical Sciences, 2007. 
[6] 
T. Burden, J. Ernstberger and K. R. Fister, Optimal control applied to immunotherapy Discrete and Continuous Dynamical Systems  Series B, 4 (2004), 135146. 
[7] 
F. Castiglione and B. Piccoli, Optimal control in a model of dendritic cell transfection cancer immunotherapy, Bulletin of Mathematical Biology, 68 (2006), 255274. doi: 10.1007/s1153800590143. 
[8] 
M. Eisen, "Mathematical Models in Cell Biology and Cancer Chemotherapy," Lecture Notes in Biomathematics, Vol. 30, Springer Verlag, 1979. 
[9] 
A. Ergun, K. Camphausen and L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors, Bulletin of Mathematical Biology, 65 (2003), 407424. 
[10] 
K. R. Fister and J. Hughes Donnelly, Immunotherapy: an optimal control approach, Mathematical Biosciences and Engineering (MBE), 2 2005, 499510. doi: 10.3934/mbe.2005.2.499. 
[11] 
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields," Springer Verlag, New York, 1983. 
[12] 
G. T. Huntington, "Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Control," Ph.D. thesis, MIT, 2007. 
[13] 
D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumorimmune interaction, J. of Mathematical Biology, 37 (1998), 235252. 
[14] 
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bull. Mathematical Biology, 56 (1994), 295321. 
[15] 
U. Ledzewicz, J. Marriott, H. Maurer and H. Schättler, Realizable protocols for optimal administration of drugs in mathematical models for antiangiogenic treatment, Math. Medicine and Biology, 27 (2010), 157179. doi: 10.1093/imammb/dqp012. 
[16] 
U. Ledzewicz, H. Maurer and H. Schättler, Bangbang and singular controls in a mathematical model for combined antiangiogenic and chemotherapy treatments, Proc. 48th IEEE Conf. on Dec. and Contr., Shanghai, China, (2009), 22802285. 
[17] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, An optimal control approach to cancer treatment under immunological activity, Applicationes Mathematicae, 38 (2011), 1731. doi: 10.4064/am3812. 
[18] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, Bifurcation of singular arcs in an optimal control problem for cancer immune system interactions under treatment, Proceedings of the 49th IEEE Conf. on Decision and Control, Atlanta, USA, (2010), 70397044. 
[19] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, Dynamics of tumorimmune interactions under treatment as an optimal control problem, Proc. of the 8th AIMS Conf., Dresden, Germany, (2010), 971980. 
[20] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, Optimal response to chemotherapy for a mathematical model of tumorimmune dynamics, J. of Mathematical Biology, 64 (2012), 557577. doi: 10.1007/s0028501104246. 
[21] 
U. Ledzewicz and H. Schättler, Analysis of a cellcycle specific model for cancer chemotherapy, J. of Biological Systems, 10 (2002), 183206. 
[22] 
U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. Control and Optimization, 46 (2007), 10521079. doi: 10.1137/060665294. 
[23] 
U. Ledzewicz and H. Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor antiangiogenesis, J. of Theoretical Biology, 252 (2008), 295312. 
[24] 
L. Norton and R. Simon, Growth curve of an experimental solid tumor following radiotherapy, J. of the National Cancer Institute, 58 (1977), 17351741. 
[25] 
L. Norton, A Gompertzian model of human breast cancer growth, Cancer Research, 48 (1988), 70677071. 
[26] 
A. d'Onofrio, A general framework for modeling tumorimmune system competition and immunotherapy: mathematical analysis and biomedical inferences, Physica D, 208 (2005), 220235 doi: 10.1016/j.physd.2005.06.032. 
[27] 
A. d'Onofrio, Tumorimmune system interaction: modeling the tumorstimulated proliferation of effectors and immunotherapy, Math. Models and Methods in Applied Sciences, 16 (2006), 13751401. doi: 10.1142/S0218202506001571. 
[28] 
A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On Optimal Delivery of Combination Therapy for Tumors, Mathematical Biosciences, 222 (2009), 1326. doi: 10.1016/j.mbs.2009.08.004. 
[29] 
L. G. de Pillis and A. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: an optimal control approach, J. of Theoretical Medicine, 3 (2001), 79100. 
[30] 
A. V. Rao, D. A. Benson, G. T. Huntington, C. Francolin, C. L. Darby and M. A. Patterson, "User's Manual for GPOPS: A MATLAB Package for Dynamic Optimization Using the Gauss Pseudospectral Method," University of Florida Report, 2008. 
[31] 
H. Schättler and U. Ledzewicz, "Geometric Optimal Control: Theory, Methods and Examples," Springer Verlag, 2012. doi: 10.1007/9781461438342. 
[32] 
N.V. Stepanova, Course of the immune reaction during the development of a malignant tumour, Biophysics, 24 (1980), 917923. 
[33] 
G. W. Swan, Role of optimal control in cancer chemotherapy, Mathematical Biosciences, 101 (1990), 237284. 
[34] 
A. Swierniak, Optimal treatment protocols in leukemia  modelling the proliferation cycle, Proceedings of the 12th IMACS World Congress, Paris, 4 (1988), 170172. 
[35] 
A. Swierniak, Cell cycle as an object of control, J. of Biological Systems, 3 (1995), 4154. 
[36] 
A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy, Int. J. Applied Mathematics and Computer Science, 13 (2003), 357368. 
[37] 
H. P. de Vladar and J. A. González, Dynamic response of cancer under the influence of immunological activity and therapy, J. of Theoretical Biology, 227 (2004), 335348. doi: 10.1016/j.jtbi.2003.11.012. 
show all references
References:
[1] 
D. J. Bell and D. H. Jacobson, "Singular Optimal Control Problems," Academic Press, 1975. 
[2] 
D. A. Benson, "A Gauss Pseudospectral Transcription for Optimal Control," Ph.D. thesis, MIT, 2004. 
[3] 
D. A. Benson, G. T. Huntington, T. P. Thorvaldsen and A. V. Rao, Direct trajectory optimization and costate estimation via an orthogonal collocation method, J. of Guidance, Control, and Dynamics, 29 (2006), 14351440. 
[4] 
B. Bonnard and M. Chyba, "Singular Trajectories and their Role in Control Theory," Springer Verlag, Series: Mathematics and Applications, Vol. 40, 2003. 
[5] 
A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control," American Institute of Mathematical Sciences, 2007. 
[6] 
T. Burden, J. Ernstberger and K. R. Fister, Optimal control applied to immunotherapy Discrete and Continuous Dynamical Systems  Series B, 4 (2004), 135146. 
[7] 
F. Castiglione and B. Piccoli, Optimal control in a model of dendritic cell transfection cancer immunotherapy, Bulletin of Mathematical Biology, 68 (2006), 255274. doi: 10.1007/s1153800590143. 
[8] 
M. Eisen, "Mathematical Models in Cell Biology and Cancer Chemotherapy," Lecture Notes in Biomathematics, Vol. 30, Springer Verlag, 1979. 
[9] 
A. Ergun, K. Camphausen and L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors, Bulletin of Mathematical Biology, 65 (2003), 407424. 
[10] 
K. R. Fister and J. Hughes Donnelly, Immunotherapy: an optimal control approach, Mathematical Biosciences and Engineering (MBE), 2 2005, 499510. doi: 10.3934/mbe.2005.2.499. 
[11] 
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields," Springer Verlag, New York, 1983. 
[12] 
G. T. Huntington, "Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Control," Ph.D. thesis, MIT, 2007. 
[13] 
D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumorimmune interaction, J. of Mathematical Biology, 37 (1998), 235252. 
[14] 
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bull. Mathematical Biology, 56 (1994), 295321. 
[15] 
U. Ledzewicz, J. Marriott, H. Maurer and H. Schättler, Realizable protocols for optimal administration of drugs in mathematical models for antiangiogenic treatment, Math. Medicine and Biology, 27 (2010), 157179. doi: 10.1093/imammb/dqp012. 
[16] 
U. Ledzewicz, H. Maurer and H. Schättler, Bangbang and singular controls in a mathematical model for combined antiangiogenic and chemotherapy treatments, Proc. 48th IEEE Conf. on Dec. and Contr., Shanghai, China, (2009), 22802285. 
[17] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, An optimal control approach to cancer treatment under immunological activity, Applicationes Mathematicae, 38 (2011), 1731. doi: 10.4064/am3812. 
[18] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, Bifurcation of singular arcs in an optimal control problem for cancer immune system interactions under treatment, Proceedings of the 49th IEEE Conf. on Decision and Control, Atlanta, USA, (2010), 70397044. 
[19] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, Dynamics of tumorimmune interactions under treatment as an optimal control problem, Proc. of the 8th AIMS Conf., Dresden, Germany, (2010), 971980. 
[20] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, Optimal response to chemotherapy for a mathematical model of tumorimmune dynamics, J. of Mathematical Biology, 64 (2012), 557577. doi: 10.1007/s0028501104246. 
[21] 
U. Ledzewicz and H. Schättler, Analysis of a cellcycle specific model for cancer chemotherapy, J. of Biological Systems, 10 (2002), 183206. 
[22] 
U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. Control and Optimization, 46 (2007), 10521079. doi: 10.1137/060665294. 
[23] 
U. Ledzewicz and H. Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor antiangiogenesis, J. of Theoretical Biology, 252 (2008), 295312. 
[24] 
L. Norton and R. Simon, Growth curve of an experimental solid tumor following radiotherapy, J. of the National Cancer Institute, 58 (1977), 17351741. 
[25] 
L. Norton, A Gompertzian model of human breast cancer growth, Cancer Research, 48 (1988), 70677071. 
[26] 
A. d'Onofrio, A general framework for modeling tumorimmune system competition and immunotherapy: mathematical analysis and biomedical inferences, Physica D, 208 (2005), 220235 doi: 10.1016/j.physd.2005.06.032. 
[27] 
A. d'Onofrio, Tumorimmune system interaction: modeling the tumorstimulated proliferation of effectors and immunotherapy, Math. Models and Methods in Applied Sciences, 16 (2006), 13751401. doi: 10.1142/S0218202506001571. 
[28] 
A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On Optimal Delivery of Combination Therapy for Tumors, Mathematical Biosciences, 222 (2009), 1326. doi: 10.1016/j.mbs.2009.08.004. 
[29] 
L. G. de Pillis and A. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: an optimal control approach, J. of Theoretical Medicine, 3 (2001), 79100. 
[30] 
A. V. Rao, D. A. Benson, G. T. Huntington, C. Francolin, C. L. Darby and M. A. Patterson, "User's Manual for GPOPS: A MATLAB Package for Dynamic Optimization Using the Gauss Pseudospectral Method," University of Florida Report, 2008. 
[31] 
H. Schättler and U. Ledzewicz, "Geometric Optimal Control: Theory, Methods and Examples," Springer Verlag, 2012. doi: 10.1007/9781461438342. 
[32] 
N.V. Stepanova, Course of the immune reaction during the development of a malignant tumour, Biophysics, 24 (1980), 917923. 
[33] 
G. W. Swan, Role of optimal control in cancer chemotherapy, Mathematical Biosciences, 101 (1990), 237284. 
[34] 
A. Swierniak, Optimal treatment protocols in leukemia  modelling the proliferation cycle, Proceedings of the 12th IMACS World Congress, Paris, 4 (1988), 170172. 
[35] 
A. Swierniak, Cell cycle as an object of control, J. of Biological Systems, 3 (1995), 4154. 
[36] 
A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy, Int. J. Applied Mathematics and Computer Science, 13 (2003), 357368. 
[37] 
H. P. de Vladar and J. A. González, Dynamic response of cancer under the influence of immunological activity and therapy, J. of Theoretical Biology, 227 (2004), 335348. doi: 10.1016/j.jtbi.2003.11.012. 
[1] 
Urszula Ledzewicz, Omeiza Olumoye, Heinz Schättler. On optimal chemotherapy with a strongly targeted agent for a model of tumorimmune system interactions with generalized logistic growth. Mathematical Biosciences & Engineering, 2013, 10 (3) : 787802. doi: 10.3934/mbe.2013.10.787 
[2] 
Urszula Ledzewicz, Mohammad Naghnaeian, Heinz Schättler. Dynamics of tumorimmune interaction under treatment as an optimal control problem. Conference Publications, 2011, 2011 (Special) : 971980. doi: 10.3934/proc.2011.2011.971 
[3] 
Sophia RJ Jang, HsiuChuan Wei. On a mathematical model of tumorimmune system interactions with an oncolytic virus therapy. Discrete and Continuous Dynamical Systems  B, 2022, 27 (6) : 32613295. doi: 10.3934/dcdsb.2021184 
[4] 
Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 12231240. doi: 10.3934/mbe.2016040 
[5] 
Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumorimmune model with an immune checkpoint inhibitor. Discrete and Continuous Dynamical Systems  B, 2021, 26 (2) : 11491170. doi: 10.3934/dcdsb.2020157 
[6] 
Dan Liu, Shigui Ruan, Deming Zhu. Bifurcation analysis in models of tumor and immune system interactions. Discrete and Continuous Dynamical Systems  B, 2009, 12 (1) : 151168. doi: 10.3934/dcdsb.2009.12.151 
[7] 
Giulio Caravagna, Alex Graudenzi, Alberto d’Onofrio. Distributed delays in a hybrid model of tumorImmune system interplay. Mathematical Biosciences & Engineering, 2013, 10 (1) : 3757. doi: 10.3934/mbe.2013.10.37 
[8] 
J.C. Arciero, T.L. Jackson, D.E. Kirschner. A mathematical model of tumorimmune evasion and siRNA treatment. Discrete and Continuous Dynamical Systems  B, 2004, 4 (1) : 3958. doi: 10.3934/dcdsb.2004.4.39 
[9] 
Shigui Ruan. Nonlinear dynamics in tumorimmune system interaction models with delays. Discrete and Continuous Dynamical Systems  B, 2021, 26 (1) : 541602. doi: 10.3934/dcdsb.2020282 
[10] 
Mohammad A. Tabatabai, Wayne M. Eby, Karan P. Singh, Sejong Bae. T model of growth and its application in systems of tumorimmune dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 925938. doi: 10.3934/mbe.2013.10.925 
[11] 
Lifeng Han, Changhan He, Yang Kuang. Dynamics of a model of tumorimmune interaction with time delay and noise. Discrete and Continuous Dynamical Systems  S, 2020, 13 (9) : 23472363. doi: 10.3934/dcdss.2020140 
[12] 
Gladis TorresEspino, Claudio Vidal. Periodic solutions of a tumorimmune system interaction under a periodic immunotherapy. Discrete and Continuous Dynamical Systems  B, 2021, 26 (8) : 45234547. doi: 10.3934/dcdsb.2020301 
[13] 
Shuo Wang, Heinz Schättler. Optimal control for cancer chemotherapy under tumor heterogeneity with MichealisMenten pharmacodynamics. Discrete and Continuous Dynamical Systems  B, 2019, 24 (5) : 23832405. doi: 10.3934/dcdsb.2019100 
[14] 
Arturo AlvarezArenas, Konstantin E. Starkov, Gabriel F. Calvo, Juan BelmonteBeitia. Ultimate dynamics and optimal control of a multicompartment model of tumor resistance to chemotherapy. Discrete and Continuous Dynamical Systems  B, 2019, 24 (5) : 20172038. doi: 10.3934/dcdsb.2019082 
[15] 
Urszula Ledzewicz, Heinz Schättler, Shuo Wang. On the role of tumor heterogeneity for optimal cancer chemotherapy. Networks and Heterogeneous Media, 2019, 14 (1) : 131147. doi: 10.3934/nhm.2019007 
[16] 
Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumorimmune system with time delay of tumor action. Discrete and Continuous Dynamical Systems  B, 2021, 26 (10) : 52275249. doi: 10.3934/dcdsb.2020341 
[17] 
Jianquan Li, Xiangxiang Ma, Yuming Chen, Dian Zhang. Complex dynamic behaviors of a tumorimmune system with two delays in tumor actions. Discrete and Continuous Dynamical Systems  B, 2022 doi: 10.3934/dcdsb.2022033 
[18] 
Martina Conte, Maria Groppi, Giampiero Spiga. Qualitative analysis of kineticbased models for tumorimmune system interaction. Discrete and Continuous Dynamical Systems  B, 2018, 23 (6) : 23932414. doi: 10.3934/dcdsb.2018060 
[19] 
Min Yu, Gang Huang, Yueping Dong, Yasuhiro Takeuchi. Complicated dynamics of tumorimmune system interaction model with distributed time delay. Discrete and Continuous Dynamical Systems  B, 2020, 25 (7) : 23912406. doi: 10.3934/dcdsb.2020015 
[20] 
Urszula Ledzewicz, Heinz Schättler. The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models. Mathematical Biosciences & Engineering, 2005, 2 (3) : 561578. doi: 10.3934/mbe.2005.2.561 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]