
Previous Article
B cell chronic lymphocytic leukemia  A model with immune response
 DCDSB Home
 This Issue

Next Article
A mathematical model for the immunotherapeutic control of the Th1/Th2 imbalance in melanoma
Optimal controls for a mathematical model of tumorimmune interactions under targeted chemotherapy with immune boost
1.  Dept. of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 620261653, United States 
2.  Dept. of Electrical and Systems Engineering, Washington University, St. Louis, Missouri, 631304899 
References:
[1] 
D. J. Bell and D. H. Jacobson, "Singular Optimal Control Problems," Academic Press, 1975. Google Scholar 
[2] 
D. A. Benson, "A Gauss Pseudospectral Transcription for Optimal Control," Ph.D. thesis, MIT, 2004. Google Scholar 
[3] 
D. A. Benson, G. T. Huntington, T. P. Thorvaldsen and A. V. Rao, Direct trajectory optimization and costate estimation via an orthogonal collocation method, J. of Guidance, Control, and Dynamics, 29 (2006), 14351440. Google Scholar 
[4] 
B. Bonnard and M. Chyba, "Singular Trajectories and their Role in Control Theory," Springer Verlag, Series: Mathematics and Applications, Vol. 40, 2003. Google Scholar 
[5] 
A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control," American Institute of Mathematical Sciences, 2007. Google Scholar 
[6] 
T. Burden, J. Ernstberger and K. R. Fister, Optimal control applied to immunotherapy Discrete and Continuous Dynamical Systems  Series B, 4 (2004), 135146. Google Scholar 
[7] 
F. Castiglione and B. Piccoli, Optimal control in a model of dendritic cell transfection cancer immunotherapy, Bulletin of Mathematical Biology, 68 (2006), 255274. doi: 10.1007/s1153800590143. Google Scholar 
[8] 
M. Eisen, "Mathematical Models in Cell Biology and Cancer Chemotherapy," Lecture Notes in Biomathematics, Vol. 30, Springer Verlag, 1979. Google Scholar 
[9] 
A. Ergun, K. Camphausen and L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors, Bulletin of Mathematical Biology, 65 (2003), 407424. Google Scholar 
[10] 
K. R. Fister and J. Hughes Donnelly, Immunotherapy: an optimal control approach, Mathematical Biosciences and Engineering (MBE), 2 2005, 499510. doi: 10.3934/mbe.2005.2.499. Google Scholar 
[11] 
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields," Springer Verlag, New York, 1983. Google Scholar 
[12] 
G. T. Huntington, "Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Control," Ph.D. thesis, MIT, 2007. Google Scholar 
[13] 
D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumorimmune interaction, J. of Mathematical Biology, 37 (1998), 235252. Google Scholar 
[14] 
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bull. Mathematical Biology, 56 (1994), 295321. Google Scholar 
[15] 
U. Ledzewicz, J. Marriott, H. Maurer and H. Schättler, Realizable protocols for optimal administration of drugs in mathematical models for antiangiogenic treatment, Math. Medicine and Biology, 27 (2010), 157179. doi: 10.1093/imammb/dqp012. Google Scholar 
[16] 
U. Ledzewicz, H. Maurer and H. Schättler, Bangbang and singular controls in a mathematical model for combined antiangiogenic and chemotherapy treatments, Proc. 48th IEEE Conf. on Dec. and Contr., Shanghai, China, (2009), 22802285. Google Scholar 
[17] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, An optimal control approach to cancer treatment under immunological activity, Applicationes Mathematicae, 38 (2011), 1731. doi: 10.4064/am3812. Google Scholar 
[18] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, Bifurcation of singular arcs in an optimal control problem for cancer immune system interactions under treatment, Proceedings of the 49th IEEE Conf. on Decision and Control, Atlanta, USA, (2010), 70397044. Google Scholar 
[19] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, Dynamics of tumorimmune interactions under treatment as an optimal control problem, Proc. of the 8th AIMS Conf., Dresden, Germany, (2010), 971980. Google Scholar 
[20] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, Optimal response to chemotherapy for a mathematical model of tumorimmune dynamics, J. of Mathematical Biology, 64 (2012), 557577. doi: 10.1007/s0028501104246. Google Scholar 
[21] 
U. Ledzewicz and H. Schättler, Analysis of a cellcycle specific model for cancer chemotherapy, J. of Biological Systems, 10 (2002), 183206. Google Scholar 
[22] 
U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. Control and Optimization, 46 (2007), 10521079. doi: 10.1137/060665294. Google Scholar 
[23] 
U. Ledzewicz and H. Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor antiangiogenesis, J. of Theoretical Biology, 252 (2008), 295312. Google Scholar 
[24] 
L. Norton and R. Simon, Growth curve of an experimental solid tumor following radiotherapy, J. of the National Cancer Institute, 58 (1977), 17351741. Google Scholar 
[25] 
L. Norton, A Gompertzian model of human breast cancer growth, Cancer Research, 48 (1988), 70677071. Google Scholar 
[26] 
A. d'Onofrio, A general framework for modeling tumorimmune system competition and immunotherapy: mathematical analysis and biomedical inferences, Physica D, 208 (2005), 220235 doi: 10.1016/j.physd.2005.06.032. Google Scholar 
[27] 
A. d'Onofrio, Tumorimmune system interaction: modeling the tumorstimulated proliferation of effectors and immunotherapy, Math. Models and Methods in Applied Sciences, 16 (2006), 13751401. doi: 10.1142/S0218202506001571. Google Scholar 
[28] 
A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On Optimal Delivery of Combination Therapy for Tumors, Mathematical Biosciences, 222 (2009), 1326. doi: 10.1016/j.mbs.2009.08.004. Google Scholar 
[29] 
L. G. de Pillis and A. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: an optimal control approach, J. of Theoretical Medicine, 3 (2001), 79100. Google Scholar 
[30] 
A. V. Rao, D. A. Benson, G. T. Huntington, C. Francolin, C. L. Darby and M. A. Patterson, "User's Manual for GPOPS: A MATLAB Package for Dynamic Optimization Using the Gauss Pseudospectral Method," University of Florida Report, 2008. Google Scholar 
[31] 
H. Schättler and U. Ledzewicz, "Geometric Optimal Control: Theory, Methods and Examples," Springer Verlag, 2012. doi: 10.1007/9781461438342. Google Scholar 
[32] 
N.V. Stepanova, Course of the immune reaction during the development of a malignant tumour, Biophysics, 24 (1980), 917923. Google Scholar 
[33] 
G. W. Swan, Role of optimal control in cancer chemotherapy, Mathematical Biosciences, 101 (1990), 237284. Google Scholar 
[34] 
A. Swierniak, Optimal treatment protocols in leukemia  modelling the proliferation cycle, Proceedings of the 12th IMACS World Congress, Paris, 4 (1988), 170172. Google Scholar 
[35] 
A. Swierniak, Cell cycle as an object of control, J. of Biological Systems, 3 (1995), 4154. Google Scholar 
[36] 
A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy, Int. J. Applied Mathematics and Computer Science, 13 (2003), 357368. Google Scholar 
[37] 
H. P. de Vladar and J. A. González, Dynamic response of cancer under the influence of immunological activity and therapy, J. of Theoretical Biology, 227 (2004), 335348. doi: 10.1016/j.jtbi.2003.11.012. Google Scholar 
show all references
References:
[1] 
D. J. Bell and D. H. Jacobson, "Singular Optimal Control Problems," Academic Press, 1975. Google Scholar 
[2] 
D. A. Benson, "A Gauss Pseudospectral Transcription for Optimal Control," Ph.D. thesis, MIT, 2004. Google Scholar 
[3] 
D. A. Benson, G. T. Huntington, T. P. Thorvaldsen and A. V. Rao, Direct trajectory optimization and costate estimation via an orthogonal collocation method, J. of Guidance, Control, and Dynamics, 29 (2006), 14351440. Google Scholar 
[4] 
B. Bonnard and M. Chyba, "Singular Trajectories and their Role in Control Theory," Springer Verlag, Series: Mathematics and Applications, Vol. 40, 2003. Google Scholar 
[5] 
A. Bressan and B. Piccoli, "Introduction to the Mathematical Theory of Control," American Institute of Mathematical Sciences, 2007. Google Scholar 
[6] 
T. Burden, J. Ernstberger and K. R. Fister, Optimal control applied to immunotherapy Discrete and Continuous Dynamical Systems  Series B, 4 (2004), 135146. Google Scholar 
[7] 
F. Castiglione and B. Piccoli, Optimal control in a model of dendritic cell transfection cancer immunotherapy, Bulletin of Mathematical Biology, 68 (2006), 255274. doi: 10.1007/s1153800590143. Google Scholar 
[8] 
M. Eisen, "Mathematical Models in Cell Biology and Cancer Chemotherapy," Lecture Notes in Biomathematics, Vol. 30, Springer Verlag, 1979. Google Scholar 
[9] 
A. Ergun, K. Camphausen and L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors, Bulletin of Mathematical Biology, 65 (2003), 407424. Google Scholar 
[10] 
K. R. Fister and J. Hughes Donnelly, Immunotherapy: an optimal control approach, Mathematical Biosciences and Engineering (MBE), 2 2005, 499510. doi: 10.3934/mbe.2005.2.499. Google Scholar 
[11] 
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields," Springer Verlag, New York, 1983. Google Scholar 
[12] 
G. T. Huntington, "Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Control," Ph.D. thesis, MIT, 2007. Google Scholar 
[13] 
D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumorimmune interaction, J. of Mathematical Biology, 37 (1998), 235252. Google Scholar 
[14] 
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bull. Mathematical Biology, 56 (1994), 295321. Google Scholar 
[15] 
U. Ledzewicz, J. Marriott, H. Maurer and H. Schättler, Realizable protocols for optimal administration of drugs in mathematical models for antiangiogenic treatment, Math. Medicine and Biology, 27 (2010), 157179. doi: 10.1093/imammb/dqp012. Google Scholar 
[16] 
U. Ledzewicz, H. Maurer and H. Schättler, Bangbang and singular controls in a mathematical model for combined antiangiogenic and chemotherapy treatments, Proc. 48th IEEE Conf. on Dec. and Contr., Shanghai, China, (2009), 22802285. Google Scholar 
[17] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, An optimal control approach to cancer treatment under immunological activity, Applicationes Mathematicae, 38 (2011), 1731. doi: 10.4064/am3812. Google Scholar 
[18] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, Bifurcation of singular arcs in an optimal control problem for cancer immune system interactions under treatment, Proceedings of the 49th IEEE Conf. on Decision and Control, Atlanta, USA, (2010), 70397044. Google Scholar 
[19] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, Dynamics of tumorimmune interactions under treatment as an optimal control problem, Proc. of the 8th AIMS Conf., Dresden, Germany, (2010), 971980. Google Scholar 
[20] 
U. Ledzewicz, M. Naghnaeian and H. Schättler, Optimal response to chemotherapy for a mathematical model of tumorimmune dynamics, J. of Mathematical Biology, 64 (2012), 557577. doi: 10.1007/s0028501104246. Google Scholar 
[21] 
U. Ledzewicz and H. Schättler, Analysis of a cellcycle specific model for cancer chemotherapy, J. of Biological Systems, 10 (2002), 183206. Google Scholar 
[22] 
U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. Control and Optimization, 46 (2007), 10521079. doi: 10.1137/060665294. Google Scholar 
[23] 
U. Ledzewicz and H. Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor antiangiogenesis, J. of Theoretical Biology, 252 (2008), 295312. Google Scholar 
[24] 
L. Norton and R. Simon, Growth curve of an experimental solid tumor following radiotherapy, J. of the National Cancer Institute, 58 (1977), 17351741. Google Scholar 
[25] 
L. Norton, A Gompertzian model of human breast cancer growth, Cancer Research, 48 (1988), 70677071. Google Scholar 
[26] 
A. d'Onofrio, A general framework for modeling tumorimmune system competition and immunotherapy: mathematical analysis and biomedical inferences, Physica D, 208 (2005), 220235 doi: 10.1016/j.physd.2005.06.032. Google Scholar 
[27] 
A. d'Onofrio, Tumorimmune system interaction: modeling the tumorstimulated proliferation of effectors and immunotherapy, Math. Models and Methods in Applied Sciences, 16 (2006), 13751401. doi: 10.1142/S0218202506001571. Google Scholar 
[28] 
A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On Optimal Delivery of Combination Therapy for Tumors, Mathematical Biosciences, 222 (2009), 1326. doi: 10.1016/j.mbs.2009.08.004. Google Scholar 
[29] 
L. G. de Pillis and A. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: an optimal control approach, J. of Theoretical Medicine, 3 (2001), 79100. Google Scholar 
[30] 
A. V. Rao, D. A. Benson, G. T. Huntington, C. Francolin, C. L. Darby and M. A. Patterson, "User's Manual for GPOPS: A MATLAB Package for Dynamic Optimization Using the Gauss Pseudospectral Method," University of Florida Report, 2008. Google Scholar 
[31] 
H. Schättler and U. Ledzewicz, "Geometric Optimal Control: Theory, Methods and Examples," Springer Verlag, 2012. doi: 10.1007/9781461438342. Google Scholar 
[32] 
N.V. Stepanova, Course of the immune reaction during the development of a malignant tumour, Biophysics, 24 (1980), 917923. Google Scholar 
[33] 
G. W. Swan, Role of optimal control in cancer chemotherapy, Mathematical Biosciences, 101 (1990), 237284. Google Scholar 
[34] 
A. Swierniak, Optimal treatment protocols in leukemia  modelling the proliferation cycle, Proceedings of the 12th IMACS World Congress, Paris, 4 (1988), 170172. Google Scholar 
[35] 
A. Swierniak, Cell cycle as an object of control, J. of Biological Systems, 3 (1995), 4154. Google Scholar 
[36] 
A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy, Int. J. Applied Mathematics and Computer Science, 13 (2003), 357368. Google Scholar 
[37] 
H. P. de Vladar and J. A. González, Dynamic response of cancer under the influence of immunological activity and therapy, J. of Theoretical Biology, 227 (2004), 335348. doi: 10.1016/j.jtbi.2003.11.012. Google Scholar 
[1] 
Urszula Ledzewicz, Omeiza Olumoye, Heinz Schättler. On optimal chemotherapy with a strongly targeted agent for a model of tumorimmune system interactions with generalized logistic growth. Mathematical Biosciences & Engineering, 2013, 10 (3) : 787802. doi: 10.3934/mbe.2013.10.787 
[2] 
Urszula Ledzewicz, Mohammad Naghnaeian, Heinz Schättler. Dynamics of tumorimmune interaction under treatment as an optimal control problem. Conference Publications, 2011, 2011 (Special) : 971980. doi: 10.3934/proc.2011.2011.971 
[3] 
Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumorimmune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems  B, 2021, 26 (2) : 11491170. doi: 10.3934/dcdsb.2020157 
[4] 
Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 12231240. doi: 10.3934/mbe.2016040 
[5] 
Dan Liu, Shigui Ruan, Deming Zhu. Bifurcation analysis in models of tumor and immune system interactions. Discrete & Continuous Dynamical Systems  B, 2009, 12 (1) : 151168. doi: 10.3934/dcdsb.2009.12.151 
[6] 
Giulio Caravagna, Alex Graudenzi, Alberto d’Onofrio. Distributed delays in a hybrid model of tumorImmune system interplay. Mathematical Biosciences & Engineering, 2013, 10 (1) : 3757. doi: 10.3934/mbe.2013.10.37 
[7] 
J.C. Arciero, T.L. Jackson, D.E. Kirschner. A mathematical model of tumorimmune evasion and siRNA treatment. Discrete & Continuous Dynamical Systems  B, 2004, 4 (1) : 3958. doi: 10.3934/dcdsb.2004.4.39 
[8] 
Shigui Ruan. Nonlinear dynamics in tumorimmune system interaction models with delays. Discrete & Continuous Dynamical Systems  B, 2021, 26 (1) : 541602. doi: 10.3934/dcdsb.2020282 
[9] 
Mohammad A. Tabatabai, Wayne M. Eby, Karan P. Singh, Sejong Bae. T model of growth and its application in systems of tumorimmune dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 925938. doi: 10.3934/mbe.2013.10.925 
[10] 
Lifeng Han, Changhan He, Yang Kuang. Dynamics of a model of tumorimmune interaction with time delay and noise. Discrete & Continuous Dynamical Systems  S, 2020, 13 (9) : 23472363. doi: 10.3934/dcdss.2020140 
[11] 
Gladis TorresEspino, Claudio Vidal. Periodic solutions of a tumorimmune system interaction under a periodic immunotherapy. Discrete & Continuous Dynamical Systems  B, 2021, 26 (8) : 45234547. doi: 10.3934/dcdsb.2020301 
[12] 
Shuo Wang, Heinz Schättler. Optimal control for cancer chemotherapy under tumor heterogeneity with MichealisMenten pharmacodynamics. Discrete & Continuous Dynamical Systems  B, 2019, 24 (5) : 23832405. doi: 10.3934/dcdsb.2019100 
[13] 
Arturo AlvarezArenas, Konstantin E. Starkov, Gabriel F. Calvo, Juan BelmonteBeitia. Ultimate dynamics and optimal control of a multicompartment model of tumor resistance to chemotherapy. Discrete & Continuous Dynamical Systems  B, 2019, 24 (5) : 20172038. doi: 10.3934/dcdsb.2019082 
[14] 
Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumorimmune system with time delay of tumor action. Discrete & Continuous Dynamical Systems  B, 2021, 26 (10) : 52275249. doi: 10.3934/dcdsb.2020341 
[15] 
Urszula Ledzewicz, Heinz Schättler, Shuo Wang. On the role of tumor heterogeneity for optimal cancer chemotherapy. Networks & Heterogeneous Media, 2019, 14 (1) : 131147. doi: 10.3934/nhm.2019007 
[16] 
Martina Conte, Maria Groppi, Giampiero Spiga. Qualitative analysis of kineticbased models for tumorimmune system interaction. Discrete & Continuous Dynamical Systems  B, 2018, 23 (6) : 23932414. doi: 10.3934/dcdsb.2018060 
[17] 
Min Yu, Gang Huang, Yueping Dong, Yasuhiro Takeuchi. Complicated dynamics of tumorimmune system interaction model with distributed time delay. Discrete & Continuous Dynamical Systems  B, 2020, 25 (7) : 23912406. doi: 10.3934/dcdsb.2020015 
[18] 
Urszula Ledzewicz, Heinz Schättler. The Influence of PK/PD on the Structure of Optimal Controls in Cancer Chemotherapy Models. Mathematical Biosciences & Engineering, 2005, 2 (3) : 561578. doi: 10.3934/mbe.2005.2.561 
[19] 
Wei Feng, Shuhua Hu, Xin Lu. Optimal controls for a 3compartment model for cancer chemotherapy with quadratic objective. Conference Publications, 2003, 2003 (Special) : 544553. doi: 10.3934/proc.2003.2003.544 
[20] 
Urszula Ledzewicz, Heinz Schättler. On the optimality of singular controls for a class of mathematical models for tumor antiangiogenesis. Discrete & Continuous Dynamical Systems  B, 2009, 11 (3) : 691715. doi: 10.3934/dcdsb.2009.11.691 
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]