-
Previous Article
Using fractal geometry and universal growth curves as diagnostics for comparing tumor vasculature and metabolic rate with healthy tissue and for predicting responses to drug therapies
- DCDS-B Home
- This Issue
-
Next Article
Optimal controls for a mathematical model of tumor-immune interactions under targeted chemotherapy with immune boost
B cell chronic lymphocytic leukemia - A model with immune response
1. | Tata Institute of Fundamental Research, Centre for Applicable Mathematics, Bangalore 560065, India |
2. | Department of Mathematics, Harvey Mudd College, Claremont, CA 91711 |
3. | Department of Mathematics, Pomona College, Claremont, CA, 91711, United States |
References:
[1] |
M. J. Keating, N. Chiorazzi, B. Messmer, R. N. Damle, S. L. Allen, K. R. Rai, et al., Biology and treatment of chronic lymphocytic leukemia, American Society of Hematology, [Review], 153 (2003), 153-175. |
[2] |
N. Chiorazzi, K. R. Rai and M. Ferrarini, Mechanisms of disease: Chronic lymphocytic leukemia, The New England Journal of Medicine, 352 (2005), 804-815, [http://www.nejm.org]. |
[3] |
F. Caligaris-Cappio and R. D. Favera (Eds), "Chronic Lymphocytic Leukemia," No. 294 in Current Topics in Microbiology and Immunology, Springer, 1 edition 2005. |
[4] |
C. Imai, S. Iwamoto and D. Campana, Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells, Blood, 106 (2005), 376-383. |
[5] |
S. Y. Zimmermann, R. Esser, E. Rohrbach, T. Klingebiel and U. Koehl, A novel four-colour flow cytometric assay to determine natural killer cell or T-cell-mediated cellular cytotoxicity against leukaemic cells in peripheral or bone marrow specimens containing greater than 20 Journal of Immunological Methods, 296 (2005), 63-76. |
[6] |
H. Guven, M. Gilljam, B. Chambers, H. Ljunggren, B. Christensson, E. Kimby, et al., Expansion of natural killer (NK) and natural killer-like T (NKT)-cell populations derived from patients with B-chronic lymphocytic leukemia (B-CLL), a potential source for cellular immunotherapy, Leukemia, 17 (2003), 1973-1980. |
[7] |
R. J. Prestwich, F. Errington, P. Hatfieldy, A. E. Merrick, E. J. Ilett, P. J. Selby, et al., The immune system - Is it relevant to cancer development, progression and treatment? Clinical Oncology, 20 (2008), 101-112. |
[8] |
E. Gitelson, C. Hammond, J. Mena, M. Lorenzo, R. Buckstein, N. L. Berinstein, et al., Chronic lymphocytic leukemia-reactive T cells during disease progression and after autologous tumor cell vaccines, Clinical Cancer Research, 9 (2003), 1656-1665. |
[9] |
M. C. Mackey, C. Ou, L. Pujo-Menjouet and J. Wu, Periodic oscillations of blood cell populations in chronic myelogenous leukemia, SIAM J. Math. Anal., 38 (2006), 166-187.
doi: 10.1137/04061578X. |
[10] |
C. Colijn and M. C. Mackey, A mathematical model of hematopoiesis - I. Periodic chronic myelogenous leukemia, Journal of Theoretical Biology, 237 (2005), 117-146.
doi: 10.1016/j.jtbi.2005.03.033. |
[11] |
H. Moore and N. K. Li, A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction, Journal of Theoretical Biology, 227 (2004), 513-523.
doi: 10.1016/j.jtbi.2003.11.024. |
[12] |
C. Haurie, D. C. Dale and M. C. Mackey, Cyclical neutropenia and other periodic hematological disorders: A review of mechanisms and mathematical models, Blood, 92 (1998), 2629-2640. |
[13] |
B. Vitale, M. Martinis, M. Antica, B. Kusic, S. Rabatic, A. Gagro, et al., Prolegomenon for chronic lymphocytic leukaemia, Scandinavian Journal of Immunology, 58 (2003), 588-600. |
[14] |
M. Martinis, B. Vitale, V. Zlatic, B. Dobrosevic and K. Dodig, Mathematical model of B-cell chronic lymphocytic leukemia (CLL), Periodicum Biologorum, 107 (2005), 445-450. |
[15] |
S. I. Niculescu, P. S. Kim, K. Gu, P. P. Lee and D. Levy, Stability crossing boundaries of delaty sustems modeling immune dynamics in leukemia, Discrete and Continuous Dynamical Systems Series B, 13 (2010), 129-156.
doi: 10.3934/dcdsb.2010.13.129. |
[16] |
B. T. Messmer, D. Messmer, S. L. Allen, J. E. Kolitz, P. Kudalkar, D. Cesar, et al., In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells, The Journal of Clinical Investigation, 115 (2005), 755-764. |
[17] |
H. Mellstedt and A. Choudhur, T and B cells in in B-chronic lymphocytic leukaemia: Faust, mephistopheles and the pact with the devil, Cancer Immunology, 55 (2006), 210-220. |
[18] |
A. L. Shaffer III, R. M. Young and L. M. Staudt, Pathogenesis of human B cell lymphomas, Annual Review of Immunology, 30 (2012), 565-610. |
[19] |
L. G. dePillis, A. E. Radunskaya and C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Research, 65 (2005), 7950-7958. |
[20] |
C. A. Janeway, P. Travers, M. Walport andM. J. Shlomchik, "Immunobiology," Garland Science, 6th edition 2005. |
[21] |
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bulletin of Mathematical Biology, 56 (1994), 295-321. |
[22] |
S. M. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example, International Statistical Review, 62 (1994), 229-243. |
[23] |
M. Hellerstein, M. Hanley, D. Cesar, S. Siler, C. Papageorgopoulos, E. Wieder, et al., Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans, Nature Medicine, 5 (1999), 83-89. |
[24] |
A. M. Jamieson, P. Isnard, J. R. Dorfman, M. C. Coles and D. H. Raulet, Turnover and proliferation of NK cells in steady state and lymphopenic conditions, The Journal of Immunology, 172 (2004), 864-870. |
[25] |
R. J. DeBoer, H. Mohri, D. D. Ho and A. S. Perelson, Turnover rates of B cells, T cells, and NK cells in simian immunodeficiency virus-infected and uninfected rhesus macaques, The Journal of Immunology, 170 (2003), 2479-2487. |
[26] |
A. K. Abbas, A. H. Lichtman and S. Pillai, "Cellular and Molecular Immunology," Saunders, 7 edition 2007. |
[27] |
A. Shimoni, H. Marcus, A. Canaan, D. Ergas, M. David, A. Berrebi, et al., A model for human B-chronic lymphocytic leukemia in human/mouse radiation chimera: Evidence for tumor-mediated suppression of antibody production in low-stage disease, Blood, 89 (1997), 2210-2218. |
[28] |
Y. Jiang, H. Shang, Z. Zhang, Y. Diao, D. Dai, W. Geng, et al., Alterations of natural killer cell and T-lymphocyte counts in adults infected with human immunodeficiency virus through blood and plasma sold in the past in China and in whom infection has progressed slowly over a long period, Clinical and Diagnostic Laboratory Immunology, 12 (2005), 1275-1279. |
[29] |
E. Kimby, H. Mellstedt, B. Nilsson, M. Björkholm and G. Holm, Differences in blood T and NK cell populations between chronic lymphocytic leukemia of B cell type (B-CLL) and monoclonal B-Lymphocytes of Undetermined Significance (B-MLUS), Leukemia, 3 (1989), 501-504. |
[30] |
M. Hernberg, T. Muhonen, J. P. Turunen, M .Hahka-Kemppinen and S. Pyrhonen, The CD4+/CD8+ ratio as a prognostic factor in patients with metastatic melanoma receiving chemoimmunotherapy, Journal Of Clinical Oncology, 14 (1996), 1698-1696. |
[31] |
I. Tinhofer, I. Marschitz, M. Kos, T. Henn, A. Egle, A. Villunger and R. Greil, Differential sensitivity of CD41 and CD81 T lymphocytes to the killing efficacy of fas (Apo-1/CD95) Ligand1 tumor cells in B chronic lymphocytic leukemia, Blood, 91 (1998), 4273-4281. |
[32] |
G. B. West, J. H. Brown and B. J. Enquist, A general model for the origin of allometric scaling laws in biology, Science, 276 (1997), 122-126. |
[33] |
A. McClean and C. Michie, In vivo estimates of division and death rates of general human T lymphocytes, Proc. Natl. Acad. Sci. USA, 92 (1995), 3707-3711. |
show all references
References:
[1] |
M. J. Keating, N. Chiorazzi, B. Messmer, R. N. Damle, S. L. Allen, K. R. Rai, et al., Biology and treatment of chronic lymphocytic leukemia, American Society of Hematology, [Review], 153 (2003), 153-175. |
[2] |
N. Chiorazzi, K. R. Rai and M. Ferrarini, Mechanisms of disease: Chronic lymphocytic leukemia, The New England Journal of Medicine, 352 (2005), 804-815, [http://www.nejm.org]. |
[3] |
F. Caligaris-Cappio and R. D. Favera (Eds), "Chronic Lymphocytic Leukemia," No. 294 in Current Topics in Microbiology and Immunology, Springer, 1 edition 2005. |
[4] |
C. Imai, S. Iwamoto and D. Campana, Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells, Blood, 106 (2005), 376-383. |
[5] |
S. Y. Zimmermann, R. Esser, E. Rohrbach, T. Klingebiel and U. Koehl, A novel four-colour flow cytometric assay to determine natural killer cell or T-cell-mediated cellular cytotoxicity against leukaemic cells in peripheral or bone marrow specimens containing greater than 20 Journal of Immunological Methods, 296 (2005), 63-76. |
[6] |
H. Guven, M. Gilljam, B. Chambers, H. Ljunggren, B. Christensson, E. Kimby, et al., Expansion of natural killer (NK) and natural killer-like T (NKT)-cell populations derived from patients with B-chronic lymphocytic leukemia (B-CLL), a potential source for cellular immunotherapy, Leukemia, 17 (2003), 1973-1980. |
[7] |
R. J. Prestwich, F. Errington, P. Hatfieldy, A. E. Merrick, E. J. Ilett, P. J. Selby, et al., The immune system - Is it relevant to cancer development, progression and treatment? Clinical Oncology, 20 (2008), 101-112. |
[8] |
E. Gitelson, C. Hammond, J. Mena, M. Lorenzo, R. Buckstein, N. L. Berinstein, et al., Chronic lymphocytic leukemia-reactive T cells during disease progression and after autologous tumor cell vaccines, Clinical Cancer Research, 9 (2003), 1656-1665. |
[9] |
M. C. Mackey, C. Ou, L. Pujo-Menjouet and J. Wu, Periodic oscillations of blood cell populations in chronic myelogenous leukemia, SIAM J. Math. Anal., 38 (2006), 166-187.
doi: 10.1137/04061578X. |
[10] |
C. Colijn and M. C. Mackey, A mathematical model of hematopoiesis - I. Periodic chronic myelogenous leukemia, Journal of Theoretical Biology, 237 (2005), 117-146.
doi: 10.1016/j.jtbi.2005.03.033. |
[11] |
H. Moore and N. K. Li, A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction, Journal of Theoretical Biology, 227 (2004), 513-523.
doi: 10.1016/j.jtbi.2003.11.024. |
[12] |
C. Haurie, D. C. Dale and M. C. Mackey, Cyclical neutropenia and other periodic hematological disorders: A review of mechanisms and mathematical models, Blood, 92 (1998), 2629-2640. |
[13] |
B. Vitale, M. Martinis, M. Antica, B. Kusic, S. Rabatic, A. Gagro, et al., Prolegomenon for chronic lymphocytic leukaemia, Scandinavian Journal of Immunology, 58 (2003), 588-600. |
[14] |
M. Martinis, B. Vitale, V. Zlatic, B. Dobrosevic and K. Dodig, Mathematical model of B-cell chronic lymphocytic leukemia (CLL), Periodicum Biologorum, 107 (2005), 445-450. |
[15] |
S. I. Niculescu, P. S. Kim, K. Gu, P. P. Lee and D. Levy, Stability crossing boundaries of delaty sustems modeling immune dynamics in leukemia, Discrete and Continuous Dynamical Systems Series B, 13 (2010), 129-156.
doi: 10.3934/dcdsb.2010.13.129. |
[16] |
B. T. Messmer, D. Messmer, S. L. Allen, J. E. Kolitz, P. Kudalkar, D. Cesar, et al., In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells, The Journal of Clinical Investigation, 115 (2005), 755-764. |
[17] |
H. Mellstedt and A. Choudhur, T and B cells in in B-chronic lymphocytic leukaemia: Faust, mephistopheles and the pact with the devil, Cancer Immunology, 55 (2006), 210-220. |
[18] |
A. L. Shaffer III, R. M. Young and L. M. Staudt, Pathogenesis of human B cell lymphomas, Annual Review of Immunology, 30 (2012), 565-610. |
[19] |
L. G. dePillis, A. E. Radunskaya and C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Research, 65 (2005), 7950-7958. |
[20] |
C. A. Janeway, P. Travers, M. Walport andM. J. Shlomchik, "Immunobiology," Garland Science, 6th edition 2005. |
[21] |
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bulletin of Mathematical Biology, 56 (1994), 295-321. |
[22] |
S. M. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example, International Statistical Review, 62 (1994), 229-243. |
[23] |
M. Hellerstein, M. Hanley, D. Cesar, S. Siler, C. Papageorgopoulos, E. Wieder, et al., Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans, Nature Medicine, 5 (1999), 83-89. |
[24] |
A. M. Jamieson, P. Isnard, J. R. Dorfman, M. C. Coles and D. H. Raulet, Turnover and proliferation of NK cells in steady state and lymphopenic conditions, The Journal of Immunology, 172 (2004), 864-870. |
[25] |
R. J. DeBoer, H. Mohri, D. D. Ho and A. S. Perelson, Turnover rates of B cells, T cells, and NK cells in simian immunodeficiency virus-infected and uninfected rhesus macaques, The Journal of Immunology, 170 (2003), 2479-2487. |
[26] |
A. K. Abbas, A. H. Lichtman and S. Pillai, "Cellular and Molecular Immunology," Saunders, 7 edition 2007. |
[27] |
A. Shimoni, H. Marcus, A. Canaan, D. Ergas, M. David, A. Berrebi, et al., A model for human B-chronic lymphocytic leukemia in human/mouse radiation chimera: Evidence for tumor-mediated suppression of antibody production in low-stage disease, Blood, 89 (1997), 2210-2218. |
[28] |
Y. Jiang, H. Shang, Z. Zhang, Y. Diao, D. Dai, W. Geng, et al., Alterations of natural killer cell and T-lymphocyte counts in adults infected with human immunodeficiency virus through blood and plasma sold in the past in China and in whom infection has progressed slowly over a long period, Clinical and Diagnostic Laboratory Immunology, 12 (2005), 1275-1279. |
[29] |
E. Kimby, H. Mellstedt, B. Nilsson, M. Björkholm and G. Holm, Differences in blood T and NK cell populations between chronic lymphocytic leukemia of B cell type (B-CLL) and monoclonal B-Lymphocytes of Undetermined Significance (B-MLUS), Leukemia, 3 (1989), 501-504. |
[30] |
M. Hernberg, T. Muhonen, J. P. Turunen, M .Hahka-Kemppinen and S. Pyrhonen, The CD4+/CD8+ ratio as a prognostic factor in patients with metastatic melanoma receiving chemoimmunotherapy, Journal Of Clinical Oncology, 14 (1996), 1698-1696. |
[31] |
I. Tinhofer, I. Marschitz, M. Kos, T. Henn, A. Egle, A. Villunger and R. Greil, Differential sensitivity of CD41 and CD81 T lymphocytes to the killing efficacy of fas (Apo-1/CD95) Ligand1 tumor cells in B chronic lymphocytic leukemia, Blood, 91 (1998), 4273-4281. |
[32] |
G. B. West, J. H. Brown and B. J. Enquist, A general model for the origin of allometric scaling laws in biology, Science, 276 (1997), 122-126. |
[33] |
A. McClean and C. Michie, In vivo estimates of division and death rates of general human T lymphocytes, Proc. Natl. Acad. Sci. USA, 92 (1995), 3707-3711. |
[1] |
Amy H. Lin Erickson, Alison Wise, Stephen Fleming, Margaret Baird, Zabeen Lateef, Annette Molinaro, Miranda Teboh-Ewungkem, Lisette dePillis. A preliminary mathematical model of skin dendritic cell trafficking and induction of T cell immunity. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 323-336. doi: 10.3934/dcdsb.2009.12.323 |
[2] |
Lisette dePillis, Trevor Caldwell, Elizabeth Sarapata, Heather Williams. Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 915-943. doi: 10.3934/dcdsb.2013.18.915 |
[3] |
Natalia L. Komarova. Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Mathematical Biosciences & Engineering, 2011, 8 (2) : 289-306. doi: 10.3934/mbe.2011.8.289 |
[4] |
Pep Charusanti, Xiao Hu, Luonan Chen, Daniel Neuhauser, Joseph J. DiStefano III. A mathematical model of BCR-ABL autophosphorylation, signaling through the CRKL pathway, and Gleevec dynamics in chronic myeloid leukemia. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 99-114. doi: 10.3934/dcdsb.2004.4.99 |
[5] |
Reihaneh Mostolizadeh, Zahra Afsharnezhad, Anna Marciniak-Czochra. Mathematical model of Chimeric Anti-gene Receptor (CAR) T cell therapy with presence of cytokine. Numerical Algebra, Control and Optimization, 2018, 8 (1) : 63-80. doi: 10.3934/naco.2018004 |
[6] |
Houssein Ayoub, Bedreddine Ainseba, Michel Langlais, Rodolphe Thiébaut. Parameters identification for a model of T cell homeostasis. Mathematical Biosciences & Engineering, 2015, 12 (5) : 917-936. doi: 10.3934/mbe.2015.12.917 |
[7] |
Avner Friedman, Chuan Xue. A mathematical model for chronic wounds. Mathematical Biosciences & Engineering, 2011, 8 (2) : 253-261. doi: 10.3934/mbe.2011.8.253 |
[8] |
Yu-Hsien Chang, Guo-Chin Jau. The behavior of the solution for a mathematical model for analysis of the cell cycle. Communications on Pure and Applied Analysis, 2006, 5 (4) : 779-792. doi: 10.3934/cpaa.2006.5.779 |
[9] |
Mostafa Adimy, Oscar Angulo, Catherine Marquet, Leila Sebaa. A mathematical model of multistage hematopoietic cell lineages. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 1-26. doi: 10.3934/dcdsb.2014.19.1 |
[10] |
Hongjing Shi, Wanbiao Ma. An improved model of t cell development in the thymus and its stability analysis. Mathematical Biosciences & Engineering, 2006, 3 (1) : 237-248. doi: 10.3934/mbe.2006.3.237 |
[11] |
Qiaojun Situ, Jinzhi Lei. A mathematical model of stem cell regeneration with epigenetic state transitions. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1379-1397. doi: 10.3934/mbe.2017071 |
[12] |
Thomas Hillen, Peter Hinow, Zhi-An Wang. Mathematical analysis of a kinetic model for cell movement in network tissues. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1055-1080. doi: 10.3934/dcdsb.2010.14.1055 |
[13] |
Elena Fimmel, Yury S. Semenov, Alexander S. Bratus. On optimal and suboptimal treatment strategies for a mathematical model of leukemia. Mathematical Biosciences & Engineering, 2013, 10 (1) : 151-165. doi: 10.3934/mbe.2013.10.151 |
[14] |
Cliburn Chan, Andrew J.T. George, Jaroslav Stark. T cell sensitivity and specificity - kinetic proofreading revisited. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 343-360. doi: 10.3934/dcdsb.2003.3.343 |
[15] |
Loïc Barbarroux, Philippe Michel, Mostafa Adimy, Fabien Crauste. A multiscale model of the CD8 T cell immune response structured by intracellular content. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3969-4002. doi: 10.3934/dcdsb.2018120 |
[16] |
Zhixing Hu, Weijuan Pang, Fucheng Liao, Wanbiao Ma. Analysis of a CD4$^+$ T cell viral infection model with a class of saturated infection rate. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 735-745. doi: 10.3934/dcdsb.2014.19.735 |
[17] |
Ali Ashher Zaidi, Bruce Van Brunt, Graeme Charles Wake. A model for asymmetrical cell division. Mathematical Biosciences & Engineering, 2015, 12 (3) : 491-501. doi: 10.3934/mbe.2015.12.491 |
[18] |
Julien Dambrine, Nicolas Meunier, Bertrand Maury, Aude Roudneff-Chupin. A congestion model for cell migration. Communications on Pure and Applied Analysis, 2012, 11 (1) : 243-260. doi: 10.3934/cpaa.2012.11.243 |
[19] |
Keith E. Howard. A size structured model of cell dwarfism. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 471-484. doi: 10.3934/dcdsb.2001.1.471 |
[20] |
Liancheng Wang, Sean Ellermeyer. HIV infection and CD4+ T cell dynamics. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1417-1430. doi: 10.3934/dcdsb.2006.6.1417 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]