
Previous Article
A continuous model of angiogenesis: Initiation, extension, and maturation of new blood vessels modulated by vascular endothelial growth factor, angiopoietins, plateletderived growth factorB, and pericytes
 DCDSB Home
 This Issue

Next Article
B cell chronic lymphocytic leukemia  A model with immune response
Using fractal geometry and universal growth curves as diagnostics for comparing tumor vasculature and metabolic rate with healthy tissue and for predicting responses to drug therapies
1.  David Geffen School of Medicine at UCLA, Department of Biomathematics, Los Angeles, CA 900951766, United States, United States 
2.  University of California, San Francisco, Medical Sciences Training Program, San Francisco, CA 94143, United States 
3.  Santa Fe Institute, Sante Fe, NM 87501, United States 
References:
[1] 
J. W. Baish, Y. Gazit, D. A. Berk. M. Nozue, L. T. Baxter and R. K. Jain, Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolationbased network model, Microvasc Res., 51 (1996), 327346. 
[2] 
J. W. Baish, T. Stylianopoulos, R. M. Lanning, W. S. Kamoun, D. Fukumura, L. L. Munn, and R. K. Jain, Scaling rules for diffusive drug delivery in tumor and normal tissues, Proc. Natl. Acad. Sci.., 108(5) (2011), 17991803. 
[3] 
G. M. Baker, H. L. Goddard, M. B. Clarke and W. F. Whimster, Proportion of necrosis in transplanted murine adenocarcinoma and it's relationship to tumor growth, Growth, Development and Aging, 54 (1990), 8593. 
[4] 
I. D. Bassukas, Evidence for a Narrow Range of Growth Patterns of Malignant Tumors and Embryos of Different Species, Naturwissenschaften, 80 (1993), 366368. 
[5] 
L. Baxter and R. K. Jain, Transport of fluid and macromolecules in tumors: I. Role of interstitial pressure and convection, Microvascular Research, 37 (1989), 77104. 
[6] 
L. E. Benjamin and E. Keshet, Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: Induction of endothelial cell shedding and regression of hemangioblastomalike vessels by VEGF withdrawal, Proc. Natl. Acad. Sci. USA, 94 (1997), 87618766. 
[7] 
R. R. Berges, J. Vukanovic, J. I. Epstein, M. CarMIchel, L. Cisek, D. E. Johnson, R. W. Veltri, P. C. Walsh, and J. T. Isaacs, Implication of cell kinetic changes during the progression of human prostatic cancer, Clinical Cancer Research, 1 (1995), 473480. 
[8] 
B. Blonder, C. Violle, L. Patrick and B. Enquist, Leaf venation networks and the origin of the leaf economics spectrum, Ecology Letters, 14 (2011), 91100. 
[9] 
C. J. W. Breward, H. M. Byrne, and C. E. Lewis, A multiphase model describing vascular tumor growth, Bulletin of Mathematical Biology, 65 (2003), 609640. 
[10] 
H. M. Byrne, Dissecting cancer through mathematics: From the cell to the animal model, Nature Reviews Cancer, 10 (2010), 221230. 
[11] 
M. A. Chaplain, Mathematical modelling of angiogenesis, Journal of Neurooncology, 50 (2000), 3751. 
[12] 
E. H. Cooper, The biology of cell death in tumours, Cell Tissue Kinet., 6 (1973) 8795. 
[13] 
O. I. Craciunescu, S. K. Das and S. T. Clegg, Dynamic contrastenhancecd MRI and fractal characteristics of percolation clusters in twodimensional tumor blood perfusion, Transactions of the ASME, 121 (1999), 480486. 
[14] 
P. P. Delsanto, C. Guiot, P. G. Degiorgis, C. A. Condat, Y. Mansury and T. S. Deisboeck, Growth model for multicellular tumor spheroids, Applied Physics Letter, 85 (2004), 42254227. 
[15] 
L. A. Dethlefsen, J. M. S. Prewitt and M. L. Mendelsohn, Analysis of tumor growth curves, Journal of the National Cancer Institute, 40 (1967), 389405. 
[16] 
J. Folkman, What is the evidence that tumors are angiogenesis dependent?, Journal of the National Cancer Institute, 83 (1989), 46. 
[17] 
J. Folkman and M. Hochberg, Selfregulation of growth in three dimensions, The Journal of Experimental Medicine, 138 (1973), 745753. 
[18] 
J. Folkman and M. Hochberg, Selfregulation of growth in three dimensions, The Journal of Experimental Medicine, 138 (1973), 745753. 
[19] 
S. A. Frank, "Dynamics of Cancer: Incidence, Inheritance, and Evolution," Princeton University Press, Princeton, 2007. 
[20] 
Y. C. Fung, "Biomechanics: Circulation," Springer Verlag, New York, 1996. 
[21] 
M. P. Gallee, J. E. Visserde Jong, K. F. J. ten, F. H., Schroeder and T. H. Van der Kwast, Monoclonal anitbody Ki67 defined growth fraction in benign prostatic hyperplasia and prostatic cancer, J Urol, 142 (1989), 13421346. 
[22] 
R. A. Gatenby and P. K. Maini, Cancer Summed Up, Nature, 421 (2003), 321. 
[23] 
Y. Gazit, J. W. Baish, N. Safabakhsh, M. Leunig, L. T. Baxter and R. K. Jain, Fractal characteristics of tumor vascular architecture during tumor growth and regression, Microcirculation, 4 (1997) 395402. 
[24] 
C. Guiot, P. G . Degiorgis, P. P. Delsanto, P. Gabriele and T. S. Deisboeck, Does tumor growth follow a "universal law"?, Journal of Theoretical Biology, 225 (2003), 147151. doi: 10.1016/S00225193(03)002212. 
[25] 
C. Guiot, P. P. Delsanto, A. Carpinteri, N. Pugno, Y. Mansury and T. S. Deisboeck, The dynamic evolution of the power exponent in a universal growth model of tumors, Journal of Theoretical Biology, 240 (2006), 459463. doi: 10.1016/j.jtbi.2005.10.006. 
[26] 
R. Glenny, S. Bernard, B. Neradilek and N. Polissar, Quantifying the genetic influence on mammalian vascular tree structure, Proc. Natl. Acad. Sci. USA, 104 (2007), 68586863. 
[27] 
P. M. Gullino and F. H. Grantham, Studies on the exchcange of fluids between host and tumor. I. A method of growing "TissueIsolated" tumors in laboratory animals, Journal of the National Cancer Institute, 27 (1961), 679693. 
[28] 
P. M. Gullino and F. H. Grantham, The vascular space of growing tumors, Cancer Research, 24 (1964), 17271732. 
[29] 
P. M. Gullino and F. H. Grantham, Studies on the exchange of fluids between host and tumor. II. The blood flow of hepatomas and other tumors in rats and mice, Journal of the National Cancer Institute, 27 (1961), 14651491. 
[30] 
M. Gyllenberg and G. F. Webb, Quiescence as an explanation of Gompertzian tumor growth, Growth Dev. Aging, 53 (1989), 2533. 
[31] 
A. B. Herman, V. M. Savage and G. B. West, A quantitative theory of solid tumor growth, metabolic rate, and vascularization, Public Library of Science One, 6 (2011), e22973. 
[32] 
D. E. Hilmas and E. L. Gillette, Morphometric analysis of the microvasculature of tumors during growth and after Xirradiation, Cancer, 33 (1973), 103110. 
[33] 
K. Hori, M. Suzuki, S. Tanda and S. Saito, Characterization of heterogeneous distribution of tumor blood flow in the rat, Jpn. J. Cancer Res., 82 (1991), 109111. 
[34] 
R. E. Horton, Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology, Geological Society of America Bulletin, 56 (1945), 275370. 
[35] 
W. Huang, R. T. Yen, M. McLaurine and G. Bledsoe, Morphometry of the human pulmonary vasculature, Journal of Applied Physiology, 81(5) (1996), 2123. 
[36] 
E. Katifori, G. J. Szollosi and M. O. Magnasco, Damage and fluctuations induce loops in optimal transport networks, Physical Review Letters, 104 (2010), 048704. 
[37] 
G. S. Kassab, C. A. Rider, N. J. Tang and Y. C. Fung, Morphometry of pig coronary arterial trees, Am. J. Physiol., 265 (1993), H350365. 
[38] 
G. S. Kassab, K. Imoto, F. C. White, C. A. Rider, Y. C. Fung and C. M. Bloor, Coronary arterial tree remodeling in right ventricular hypertrophy, Am. J. Physiol., 265 (1993), H366375. 
[39] 
A. J. Kerkhoff and B. J. Enquist, Multiplicative by nature: Why logarithmic transformation is necessary in allometry, Journal of Theoretical Biology, 257 (2009), 519521. 
[40] 
N. L. Komarova, M. A. Sengupta and M. A. Nowak, Mutationselection networks of cancer initiation: Tumor suppressor genes and chromosomal instability, Journal of Theoretical Biology, 223 (2003), 433450. doi: 10.1016/S00225193(03)001206. 
[41] 
R. K. Jain, Determinants of tumor blood flow: A review, Cancer Research, 48 (1988), 26412658. 
[42] 
R. K. Jain, Delivery of molecular medicine to solid tumors, Science, 271 (1996), 10791080 
[43] 
R. K. Jain, Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy, Science, 307 (2005), 5862. 
[44] 
R. K. Jain and K. WardHartley, Tumor blood flowcharacterization, modifications, and role in hyperthermia, IEEE Transactions on Sonics and Ultrasonics, SU31 (1984), 504524. 
[45] 
Z. L. Jiang, G. S. Kassab and Y. C. Fung, Diameterdefined Strahler system and connectivity matrix of the pulmonary arterial tree, J. Appl. Physiol., 76 (1994), 882892. 
[46] 
A. Krogh, The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion, J. Physiol., 52 (1919), 391408. 
[47] 
A. Krogh, The supply of oxygen to the tissues and the regulation of the capillary circulation, J. Physiol., 52 (1919), 457474. 
[48] 
A. K. Laird, Dynamics of tumor growth, Growth, 13 (1964), 490502. 
[49] 
U. Ledzewicz, H. Maurer and H.Schaettler, Optimal and suboptimal protocols for a mathematical model for tumor antiangiogenesis in combination with chemotherapy, Mathematical Biosciences and Engineering, 8 (2011), 307323. doi: 10.3934/mbe.2011.8.307. 
[50] 
U. Ledzewicz, H. Maurer and H. Schaettler, Minimizing tumor volume for a mathematical model of antiangiogenesis with linear pharmacokinetics, Recent Advances in Optimization and its Applications in Engineering, M. Diehl, F. Glineur, E. Jarlebring, W. Michiels, Eds., Springer Verlag, (2010), 267276. 
[51] 
U. Ledzewicz, J. Marriot, H. Schaettler and H. Maurer, Realizable protocols for optimal administration of drugs in mathematical models for antiangiogenic treatment, Mathematical Medicine and Biology, 27 (2010), 159179. doi: 10.1093/imammb/dqp012. 
[52] 
U. Ledzewicz, J. Munden and H. Schaettler, Scheduling of antiangiogenic inhibitors for Gompertzian and logistic tumor growth models, Discrete and Continuous Dynamical Systems, Series B, Special Issue Application of Dynamical Systems to Biology and Medicine, 12 (2009), 415439 doi: 10.3934/dcdsb.2009.12.415. 
[53] 
U. Ledzewicz and H. Schaettler, Minimization of the tumor volume and endothelial support for a system describing tumor antiangiogenesis, WSEAS Transactions on Biology and Biomedicine, 5 (2008), 2333 
[54] 
U. Ledzewicz and H. Schaettler, On a class of systems describing tumor antiangiogenesis under Gompertzian growth, WSEAS Transactions on Systems, 4 (2007), 758766. 
[55] 
J. R. Less, M. C. Posner, T. C. Skalak, N. Wolmark and R. K. Jain, Geometric resistance and microvascular network architecture of human colorectal carcinoma, Microcirculation, 4 (1997), 2533. 
[56] 
J. R. Less , T. C. Skalak, E. M. Sevick and R. K. Jain, Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions, Cancer Research, 51 (1991), 265273. 
[57] 
A. J. Leu, D. A. Berk, A. Lymboussaki, K. Alitalo and R. K. Jain, Absence of functional lymphatics within a murine sarcoma: A molecular and functional evaluation, Cancer Research, 60 (2000), 43244327. 
[58] 
M. Leunig, F. Yuan, M. D. Menger, Y. Boucher, A. E. Goetz, K. Messmer and R. K. Jain, Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice, Cancer Research, 52 (1992), 65536560. 
[59] 
D. Lyden, D. R. Welch and B. Psaila, "Cancer Metastasis: Biologic Basis and Therapeutics," Cambridge University Press, New York, 2011. 
[60] 
H. Lyng, A. Skretting and E. K. Rofstad, Blood flow in six human melanoma xenograft lines with different growth characteristics, Cancer Research, 52 (1992), 584592. 
[61] 
B. B. Mandelbrot, "The Fractal Geometry of Nature," W. H. Freeman, 1982. 
[62] 
S. Masunaga, H. Nagasawa, Y. Liu, Y. Sakurai, H. Tanaka, G. Kashino, M. Suzuki. Y. Kinashi and K. Ono, Evaluation of radiosensitivity of the oxygenated tumor cell fractions in quiescent cell populations within solid tumors, Radiation Research, 174 (2010), 459466. 
[63] 
H. R. Mellor, D. J. P. Ferguson and R. Callaghan, A model of quiescent tumor microregions for evaluating multicellular resistance to chemotherapeutic drugs, British Journal of Cancer, 93 (2005), 302309. 
[64] 
L. M. Merlo, J. W. Pepper. B. J. Reid, C. C. Maley, Cancer as an evolutionary and ecological process, Nature Reviews. Cancer, 612 (2006), 924935. 
[65] 
R. J. Metzger, O. D. Klein, G. R. Martin and M. A. Krasnow, The branching programme of mouse lung development, Nature, 453 (2008), 745751. 
[66] 
F. Michor, S. A. Frank, R. M. May, Y. Iwasa and M. A. Nowak, Somatic selection for and against cancer, Journal of Theoretical Biology, 225 (2003), 377382. doi: 10.1016/S00225193(03)002674. 
[67] 
C. D. Murray, The physiological principle of minimum work. I. The vascular system and the cost of blood volume, Proc. Natl. Acad. Sci. USA, 12 (1926), 207214. 
[68] 
L. N. Owen and G. G. Steel, The growth and cell population kinetics of spontaneous tumours in domestic animals, Br. J. Cancer, 23 (1969), 493509. 
[69] 
F. William Orr, Michael R. Buchanan and L. Weiss, "Microcirculation in Cancer Metastasis," CRC Press, Inc., Boca Raton, 1991. 
[70] 
C. A. Price, S. Wing and J. S. Weitz, "Scaling and Structure of Dicotyledonous Leaf Venation Networks,", Ecology Letters, (). 
[71] 
C. A. Price, B. J. Enquist and V. M. Savage, A general model for allometric covariation in botanical form and function, Proceedings of the National Academy of Sciences, USA, 104 (2007), 1320413209. 
[72] 
M. R. Owen, T. Alarcon, P. K. Maini and H. M. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues, J. Math. Biol., 58 (2009), 689721. doi: 10.1007/s002850080213z. 
[73] 
J. Panovska, H. M. Byrne and P. K. Maini, A theoretical study of the response of vascular tumours to different types of chemotherapy, Math. Comp. Mod., 47 (2008), 560579. doi: 10.1016/j.mcm.2007.02.028. 
[74] 
W. Rogers, "Tissue Blood Flow in Transplantable Tumors of the Mouse and Hamster," University of Minnesota, 1967. 
[75] 
E. Sabo, A. Boltenko, Y. Sova, A. Stein, S. Kleinhaus and M. B. Resnick, Microscopic analysis and significance of vascular architectural complexity in renal cell carcinoma, Clin Cancer Res, 7 (2001), 533537. 
[76] 
V. M. Savage, E. J. Deeds and W. Fontana, Sizing up allometric scaling theory, Public Library of Science: Computational Biology, 4 (2008), e1000171. doi: 10.1371/journal.pcbi.1000171. 
[77] 
V. M. Savage, A. P. Allen, J. F. Gillooly, A. B. Herman, J. H. Brown and G. B. West, Scaling of number, size, and metabolic rate of cells with body size in mammals, Proceedings of the National Academy of Sciences, USA, 104 (2007), 47184723. 
[78] 
V. M. Savage, L. P. Bentley, B. J. Enquist, J. S. Sperry, D. D. Smith, P. B. Reich and E. I. von Allmen, Hydraulic tradeoffs and space filling enable better predictions of vascular structure and function in plants, Proceedings of the National Academy of Sciences, USA, 107 (2010), 2272222727. 
[79] 
V. M. Savage, J. F. Gillooly, W. H. Woodruff, G. B. West, A. P. Allen, B. J. Enquist and J. H. Brown, The predominance of quarterpower scaling in biology, Functional Ecology, 18 (2004), 257282. 
[80] 
R. Schrek, "Further Quantitative Methods for the Study of Transplantable Tumors. The Growth of R39 Sarcoma And BrownPearce Carcinoma,", 1936., (). 
[81] 
E. M. Sevick and R. K. Jain, Geometric resistance to blood flow in solid tumors perfused ex vivo: Effects of tumor size and perfusion pressure, Cancer Research, 49 (1989), 35063512. 
[82] 
S. Singhal, R. Henderson, K. Horsfield, K. Harding and G. Cumming, Morphometry of the human pulmonary arterial tree, Circ. Res., 33 (1973), 190197. 
[83] 
P. Skehan, On the normality of growth dynamics of neoplasms in vivo: A database analysis, Growth, 50 (1986), 496515. 
[84] 
M. Soltani and P. Chen, Numerical modeling of fluid flow in solid tumors, PLoS One, 6 (2011), e20344. 
[85] 
R. P. Spencer, Blood flow in transplanted tumors: Quantitative approaches to radioisotopic studies, Yale Journal of Biology and Medicine, 43 (1969), 2230. 
[86] 
R. P. Spencer and B. J. Lang, Quantification of studies of blood flow in growing and irradiated tumors in C3H mice, Growth, 40 (1976), 211216. 
[87] 
A. N. Strahler, Quantitative analysis of watershed geomorphology, Transactions of the American Geophysical Union, 8 (1957), 913920. 
[88] 
I. J. Stamper, M. R. Owen, P. K. Maini and H. M. Byrne, Oscillatory dynamics in a model of vascular tumour growth: Implications for chemotherapy, Biology Direct, 5 (2010), 27. 
[89] 
I. J. Stamper, H. M. Byrne, M. R. Owen and P. K. Maini, Modelling the role of angiogenesis and vasculogenesis in solid tumour growth, Bull. Math. Biol., 69 (2007), 27372772. doi: 10.1007/s1153800792536. 
[90] 
G. G. Steel, Speciesdependent growth patterns for mammalian neoplasms, Cell Tissue Kinet., 13 (1980), 451453. 
[91] 
G. G. Steel and L. F. Lamerton, The growth rate of human tumours, British Journal of Cancer, 20 (1966), 7486. 
[92] 
G. G. Steel, "Growth Kinetics of Tumours," Clarendon Press, 1977. 
[93] 
W. C. Summers, Dynamics of tumor growth: A mathematical model, Growth, 30 (1966), 333338. 
[94] 
I. F. Tannock, Population kinetics of carcinoma cells, capillary endothelial cells, and fibroblasts in a transplantable mouse mammary tumor, Cancer Research, 30 (1970), 24702476. 
[95] 
M. Tubiana, The kinetics of tumour cell proliferation and radiotherapy, British Journal of Radiology, 44 (1971), 325247. 
[96] 
I. M. van Leeuwen, C. Zonneveld and S. A. Kooijiman, The embedded tumour: Host physiology is important for the evaluation of tumour growth, British Journal of Cancer, 89 (2003), 22542263. 
[97] 
G. B. West, J. H. Brown and B. J. Enquist, A general model for ontogenetic growth, Nature, 413 (2001), 628631. 
[98] 
G. B. West, J. H. Brown and B. J. Enquist, A general model for the origin of allometric scaling laws in biology, Science, 276 (1997), 122126. 
[99] 
M. R. T. Yen, Y. C. Fung and N. Bingham, Elasticity of small pulmonary arteries in the cat, J. Biomech. Eng., 102 (1980), 170177. 
[100] 
M. R. T. Yen, F. Y. Zhuang, Y. C. Fung, H. H. Ho, H. Tremer and S. S. Sobin, Morphometry of the cat's pulmonary arteries, J. Biomech. Eng., 106 (1984), 131136. 
[101] 
M. Zamir, On fractal properties of arterial trees, J. Theor. Biol., 197 (1999), 517526. 
[102] 
M. Zamir, Fractal dimensions and multifractality in vascular branching, J. Theor. Biol., 212 (2001), 183190. 
[103] 
M. Zamir, "The Physics of Coronary Blood Flow," Springer, New York, 2005. 
show all references
References:
[1] 
J. W. Baish, Y. Gazit, D. A. Berk. M. Nozue, L. T. Baxter and R. K. Jain, Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolationbased network model, Microvasc Res., 51 (1996), 327346. 
[2] 
J. W. Baish, T. Stylianopoulos, R. M. Lanning, W. S. Kamoun, D. Fukumura, L. L. Munn, and R. K. Jain, Scaling rules for diffusive drug delivery in tumor and normal tissues, Proc. Natl. Acad. Sci.., 108(5) (2011), 17991803. 
[3] 
G. M. Baker, H. L. Goddard, M. B. Clarke and W. F. Whimster, Proportion of necrosis in transplanted murine adenocarcinoma and it's relationship to tumor growth, Growth, Development and Aging, 54 (1990), 8593. 
[4] 
I. D. Bassukas, Evidence for a Narrow Range of Growth Patterns of Malignant Tumors and Embryos of Different Species, Naturwissenschaften, 80 (1993), 366368. 
[5] 
L. Baxter and R. K. Jain, Transport of fluid and macromolecules in tumors: I. Role of interstitial pressure and convection, Microvascular Research, 37 (1989), 77104. 
[6] 
L. E. Benjamin and E. Keshet, Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: Induction of endothelial cell shedding and regression of hemangioblastomalike vessels by VEGF withdrawal, Proc. Natl. Acad. Sci. USA, 94 (1997), 87618766. 
[7] 
R. R. Berges, J. Vukanovic, J. I. Epstein, M. CarMIchel, L. Cisek, D. E. Johnson, R. W. Veltri, P. C. Walsh, and J. T. Isaacs, Implication of cell kinetic changes during the progression of human prostatic cancer, Clinical Cancer Research, 1 (1995), 473480. 
[8] 
B. Blonder, C. Violle, L. Patrick and B. Enquist, Leaf venation networks and the origin of the leaf economics spectrum, Ecology Letters, 14 (2011), 91100. 
[9] 
C. J. W. Breward, H. M. Byrne, and C. E. Lewis, A multiphase model describing vascular tumor growth, Bulletin of Mathematical Biology, 65 (2003), 609640. 
[10] 
H. M. Byrne, Dissecting cancer through mathematics: From the cell to the animal model, Nature Reviews Cancer, 10 (2010), 221230. 
[11] 
M. A. Chaplain, Mathematical modelling of angiogenesis, Journal of Neurooncology, 50 (2000), 3751. 
[12] 
E. H. Cooper, The biology of cell death in tumours, Cell Tissue Kinet., 6 (1973) 8795. 
[13] 
O. I. Craciunescu, S. K. Das and S. T. Clegg, Dynamic contrastenhancecd MRI and fractal characteristics of percolation clusters in twodimensional tumor blood perfusion, Transactions of the ASME, 121 (1999), 480486. 
[14] 
P. P. Delsanto, C. Guiot, P. G. Degiorgis, C. A. Condat, Y. Mansury and T. S. Deisboeck, Growth model for multicellular tumor spheroids, Applied Physics Letter, 85 (2004), 42254227. 
[15] 
L. A. Dethlefsen, J. M. S. Prewitt and M. L. Mendelsohn, Analysis of tumor growth curves, Journal of the National Cancer Institute, 40 (1967), 389405. 
[16] 
J. Folkman, What is the evidence that tumors are angiogenesis dependent?, Journal of the National Cancer Institute, 83 (1989), 46. 
[17] 
J. Folkman and M. Hochberg, Selfregulation of growth in three dimensions, The Journal of Experimental Medicine, 138 (1973), 745753. 
[18] 
J. Folkman and M. Hochberg, Selfregulation of growth in three dimensions, The Journal of Experimental Medicine, 138 (1973), 745753. 
[19] 
S. A. Frank, "Dynamics of Cancer: Incidence, Inheritance, and Evolution," Princeton University Press, Princeton, 2007. 
[20] 
Y. C. Fung, "Biomechanics: Circulation," Springer Verlag, New York, 1996. 
[21] 
M. P. Gallee, J. E. Visserde Jong, K. F. J. ten, F. H., Schroeder and T. H. Van der Kwast, Monoclonal anitbody Ki67 defined growth fraction in benign prostatic hyperplasia and prostatic cancer, J Urol, 142 (1989), 13421346. 
[22] 
R. A. Gatenby and P. K. Maini, Cancer Summed Up, Nature, 421 (2003), 321. 
[23] 
Y. Gazit, J. W. Baish, N. Safabakhsh, M. Leunig, L. T. Baxter and R. K. Jain, Fractal characteristics of tumor vascular architecture during tumor growth and regression, Microcirculation, 4 (1997) 395402. 
[24] 
C. Guiot, P. G . Degiorgis, P. P. Delsanto, P. Gabriele and T. S. Deisboeck, Does tumor growth follow a "universal law"?, Journal of Theoretical Biology, 225 (2003), 147151. doi: 10.1016/S00225193(03)002212. 
[25] 
C. Guiot, P. P. Delsanto, A. Carpinteri, N. Pugno, Y. Mansury and T. S. Deisboeck, The dynamic evolution of the power exponent in a universal growth model of tumors, Journal of Theoretical Biology, 240 (2006), 459463. doi: 10.1016/j.jtbi.2005.10.006. 
[26] 
R. Glenny, S. Bernard, B. Neradilek and N. Polissar, Quantifying the genetic influence on mammalian vascular tree structure, Proc. Natl. Acad. Sci. USA, 104 (2007), 68586863. 
[27] 
P. M. Gullino and F. H. Grantham, Studies on the exchcange of fluids between host and tumor. I. A method of growing "TissueIsolated" tumors in laboratory animals, Journal of the National Cancer Institute, 27 (1961), 679693. 
[28] 
P. M. Gullino and F. H. Grantham, The vascular space of growing tumors, Cancer Research, 24 (1964), 17271732. 
[29] 
P. M. Gullino and F. H. Grantham, Studies on the exchange of fluids between host and tumor. II. The blood flow of hepatomas and other tumors in rats and mice, Journal of the National Cancer Institute, 27 (1961), 14651491. 
[30] 
M. Gyllenberg and G. F. Webb, Quiescence as an explanation of Gompertzian tumor growth, Growth Dev. Aging, 53 (1989), 2533. 
[31] 
A. B. Herman, V. M. Savage and G. B. West, A quantitative theory of solid tumor growth, metabolic rate, and vascularization, Public Library of Science One, 6 (2011), e22973. 
[32] 
D. E. Hilmas and E. L. Gillette, Morphometric analysis of the microvasculature of tumors during growth and after Xirradiation, Cancer, 33 (1973), 103110. 
[33] 
K. Hori, M. Suzuki, S. Tanda and S. Saito, Characterization of heterogeneous distribution of tumor blood flow in the rat, Jpn. J. Cancer Res., 82 (1991), 109111. 
[34] 
R. E. Horton, Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology, Geological Society of America Bulletin, 56 (1945), 275370. 
[35] 
W. Huang, R. T. Yen, M. McLaurine and G. Bledsoe, Morphometry of the human pulmonary vasculature, Journal of Applied Physiology, 81(5) (1996), 2123. 
[36] 
E. Katifori, G. J. Szollosi and M. O. Magnasco, Damage and fluctuations induce loops in optimal transport networks, Physical Review Letters, 104 (2010), 048704. 
[37] 
G. S. Kassab, C. A. Rider, N. J. Tang and Y. C. Fung, Morphometry of pig coronary arterial trees, Am. J. Physiol., 265 (1993), H350365. 
[38] 
G. S. Kassab, K. Imoto, F. C. White, C. A. Rider, Y. C. Fung and C. M. Bloor, Coronary arterial tree remodeling in right ventricular hypertrophy, Am. J. Physiol., 265 (1993), H366375. 
[39] 
A. J. Kerkhoff and B. J. Enquist, Multiplicative by nature: Why logarithmic transformation is necessary in allometry, Journal of Theoretical Biology, 257 (2009), 519521. 
[40] 
N. L. Komarova, M. A. Sengupta and M. A. Nowak, Mutationselection networks of cancer initiation: Tumor suppressor genes and chromosomal instability, Journal of Theoretical Biology, 223 (2003), 433450. doi: 10.1016/S00225193(03)001206. 
[41] 
R. K. Jain, Determinants of tumor blood flow: A review, Cancer Research, 48 (1988), 26412658. 
[42] 
R. K. Jain, Delivery of molecular medicine to solid tumors, Science, 271 (1996), 10791080 
[43] 
R. K. Jain, Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy, Science, 307 (2005), 5862. 
[44] 
R. K. Jain and K. WardHartley, Tumor blood flowcharacterization, modifications, and role in hyperthermia, IEEE Transactions on Sonics and Ultrasonics, SU31 (1984), 504524. 
[45] 
Z. L. Jiang, G. S. Kassab and Y. C. Fung, Diameterdefined Strahler system and connectivity matrix of the pulmonary arterial tree, J. Appl. Physiol., 76 (1994), 882892. 
[46] 
A. Krogh, The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion, J. Physiol., 52 (1919), 391408. 
[47] 
A. Krogh, The supply of oxygen to the tissues and the regulation of the capillary circulation, J. Physiol., 52 (1919), 457474. 
[48] 
A. K. Laird, Dynamics of tumor growth, Growth, 13 (1964), 490502. 
[49] 
U. Ledzewicz, H. Maurer and H.Schaettler, Optimal and suboptimal protocols for a mathematical model for tumor antiangiogenesis in combination with chemotherapy, Mathematical Biosciences and Engineering, 8 (2011), 307323. doi: 10.3934/mbe.2011.8.307. 
[50] 
U. Ledzewicz, H. Maurer and H. Schaettler, Minimizing tumor volume for a mathematical model of antiangiogenesis with linear pharmacokinetics, Recent Advances in Optimization and its Applications in Engineering, M. Diehl, F. Glineur, E. Jarlebring, W. Michiels, Eds., Springer Verlag, (2010), 267276. 
[51] 
U. Ledzewicz, J. Marriot, H. Schaettler and H. Maurer, Realizable protocols for optimal administration of drugs in mathematical models for antiangiogenic treatment, Mathematical Medicine and Biology, 27 (2010), 159179. doi: 10.1093/imammb/dqp012. 
[52] 
U. Ledzewicz, J. Munden and H. Schaettler, Scheduling of antiangiogenic inhibitors for Gompertzian and logistic tumor growth models, Discrete and Continuous Dynamical Systems, Series B, Special Issue Application of Dynamical Systems to Biology and Medicine, 12 (2009), 415439 doi: 10.3934/dcdsb.2009.12.415. 
[53] 
U. Ledzewicz and H. Schaettler, Minimization of the tumor volume and endothelial support for a system describing tumor antiangiogenesis, WSEAS Transactions on Biology and Biomedicine, 5 (2008), 2333 
[54] 
U. Ledzewicz and H. Schaettler, On a class of systems describing tumor antiangiogenesis under Gompertzian growth, WSEAS Transactions on Systems, 4 (2007), 758766. 
[55] 
J. R. Less, M. C. Posner, T. C. Skalak, N. Wolmark and R. K. Jain, Geometric resistance and microvascular network architecture of human colorectal carcinoma, Microcirculation, 4 (1997), 2533. 
[56] 
J. R. Less , T. C. Skalak, E. M. Sevick and R. K. Jain, Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions, Cancer Research, 51 (1991), 265273. 
[57] 
A. J. Leu, D. A. Berk, A. Lymboussaki, K. Alitalo and R. K. Jain, Absence of functional lymphatics within a murine sarcoma: A molecular and functional evaluation, Cancer Research, 60 (2000), 43244327. 
[58] 
M. Leunig, F. Yuan, M. D. Menger, Y. Boucher, A. E. Goetz, K. Messmer and R. K. Jain, Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice, Cancer Research, 52 (1992), 65536560. 
[59] 
D. Lyden, D. R. Welch and B. Psaila, "Cancer Metastasis: Biologic Basis and Therapeutics," Cambridge University Press, New York, 2011. 
[60] 
H. Lyng, A. Skretting and E. K. Rofstad, Blood flow in six human melanoma xenograft lines with different growth characteristics, Cancer Research, 52 (1992), 584592. 
[61] 
B. B. Mandelbrot, "The Fractal Geometry of Nature," W. H. Freeman, 1982. 
[62] 
S. Masunaga, H. Nagasawa, Y. Liu, Y. Sakurai, H. Tanaka, G. Kashino, M. Suzuki. Y. Kinashi and K. Ono, Evaluation of radiosensitivity of the oxygenated tumor cell fractions in quiescent cell populations within solid tumors, Radiation Research, 174 (2010), 459466. 
[63] 
H. R. Mellor, D. J. P. Ferguson and R. Callaghan, A model of quiescent tumor microregions for evaluating multicellular resistance to chemotherapeutic drugs, British Journal of Cancer, 93 (2005), 302309. 
[64] 
L. M. Merlo, J. W. Pepper. B. J. Reid, C. C. Maley, Cancer as an evolutionary and ecological process, Nature Reviews. Cancer, 612 (2006), 924935. 
[65] 
R. J. Metzger, O. D. Klein, G. R. Martin and M. A. Krasnow, The branching programme of mouse lung development, Nature, 453 (2008), 745751. 
[66] 
F. Michor, S. A. Frank, R. M. May, Y. Iwasa and M. A. Nowak, Somatic selection for and against cancer, Journal of Theoretical Biology, 225 (2003), 377382. doi: 10.1016/S00225193(03)002674. 
[67] 
C. D. Murray, The physiological principle of minimum work. I. The vascular system and the cost of blood volume, Proc. Natl. Acad. Sci. USA, 12 (1926), 207214. 
[68] 
L. N. Owen and G. G. Steel, The growth and cell population kinetics of spontaneous tumours in domestic animals, Br. J. Cancer, 23 (1969), 493509. 
[69] 
F. William Orr, Michael R. Buchanan and L. Weiss, "Microcirculation in Cancer Metastasis," CRC Press, Inc., Boca Raton, 1991. 
[70] 
C. A. Price, S. Wing and J. S. Weitz, "Scaling and Structure of Dicotyledonous Leaf Venation Networks,", Ecology Letters, (). 
[71] 
C. A. Price, B. J. Enquist and V. M. Savage, A general model for allometric covariation in botanical form and function, Proceedings of the National Academy of Sciences, USA, 104 (2007), 1320413209. 
[72] 
M. R. Owen, T. Alarcon, P. K. Maini and H. M. Byrne, Angiogenesis and vascular remodelling in normal and cancerous tissues, J. Math. Biol., 58 (2009), 689721. doi: 10.1007/s002850080213z. 
[73] 
J. Panovska, H. M. Byrne and P. K. Maini, A theoretical study of the response of vascular tumours to different types of chemotherapy, Math. Comp. Mod., 47 (2008), 560579. doi: 10.1016/j.mcm.2007.02.028. 
[74] 
W. Rogers, "Tissue Blood Flow in Transplantable Tumors of the Mouse and Hamster," University of Minnesota, 1967. 
[75] 
E. Sabo, A. Boltenko, Y. Sova, A. Stein, S. Kleinhaus and M. B. Resnick, Microscopic analysis and significance of vascular architectural complexity in renal cell carcinoma, Clin Cancer Res, 7 (2001), 533537. 
[76] 
V. M. Savage, E. J. Deeds and W. Fontana, Sizing up allometric scaling theory, Public Library of Science: Computational Biology, 4 (2008), e1000171. doi: 10.1371/journal.pcbi.1000171. 
[77] 
V. M. Savage, A. P. Allen, J. F. Gillooly, A. B. Herman, J. H. Brown and G. B. West, Scaling of number, size, and metabolic rate of cells with body size in mammals, Proceedings of the National Academy of Sciences, USA, 104 (2007), 47184723. 
[78] 
V. M. Savage, L. P. Bentley, B. J. Enquist, J. S. Sperry, D. D. Smith, P. B. Reich and E. I. von Allmen, Hydraulic tradeoffs and space filling enable better predictions of vascular structure and function in plants, Proceedings of the National Academy of Sciences, USA, 107 (2010), 2272222727. 
[79] 
V. M. Savage, J. F. Gillooly, W. H. Woodruff, G. B. West, A. P. Allen, B. J. Enquist and J. H. Brown, The predominance of quarterpower scaling in biology, Functional Ecology, 18 (2004), 257282. 
[80] 
R. Schrek, "Further Quantitative Methods for the Study of Transplantable Tumors. The Growth of R39 Sarcoma And BrownPearce Carcinoma,", 1936., (). 
[81] 
E. M. Sevick and R. K. Jain, Geometric resistance to blood flow in solid tumors perfused ex vivo: Effects of tumor size and perfusion pressure, Cancer Research, 49 (1989), 35063512. 
[82] 
S. Singhal, R. Henderson, K. Horsfield, K. Harding and G. Cumming, Morphometry of the human pulmonary arterial tree, Circ. Res., 33 (1973), 190197. 
[83] 
P. Skehan, On the normality of growth dynamics of neoplasms in vivo: A database analysis, Growth, 50 (1986), 496515. 
[84] 
M. Soltani and P. Chen, Numerical modeling of fluid flow in solid tumors, PLoS One, 6 (2011), e20344. 
[85] 
R. P. Spencer, Blood flow in transplanted tumors: Quantitative approaches to radioisotopic studies, Yale Journal of Biology and Medicine, 43 (1969), 2230. 
[86] 
R. P. Spencer and B. J. Lang, Quantification of studies of blood flow in growing and irradiated tumors in C3H mice, Growth, 40 (1976), 211216. 
[87] 
A. N. Strahler, Quantitative analysis of watershed geomorphology, Transactions of the American Geophysical Union, 8 (1957), 913920. 
[88] 
I. J. Stamper, M. R. Owen, P. K. Maini and H. M. Byrne, Oscillatory dynamics in a model of vascular tumour growth: Implications for chemotherapy, Biology Direct, 5 (2010), 27. 
[89] 
I. J. Stamper, H. M. Byrne, M. R. Owen and P. K. Maini, Modelling the role of angiogenesis and vasculogenesis in solid tumour growth, Bull. Math. Biol., 69 (2007), 27372772. doi: 10.1007/s1153800792536. 
[90] 
G. G. Steel, Speciesdependent growth patterns for mammalian neoplasms, Cell Tissue Kinet., 13 (1980), 451453. 
[91] 
G. G. Steel and L. F. Lamerton, The growth rate of human tumours, British Journal of Cancer, 20 (1966), 7486. 
[92] 
G. G. Steel, "Growth Kinetics of Tumours," Clarendon Press, 1977. 
[93] 
W. C. Summers, Dynamics of tumor growth: A mathematical model, Growth, 30 (1966), 333338. 
[94] 
I. F. Tannock, Population kinetics of carcinoma cells, capillary endothelial cells, and fibroblasts in a transplantable mouse mammary tumor, Cancer Research, 30 (1970), 24702476. 
[95] 
M. Tubiana, The kinetics of tumour cell proliferation and radiotherapy, British Journal of Radiology, 44 (1971), 325247. 
[96] 
I. M. van Leeuwen, C. Zonneveld and S. A. Kooijiman, The embedded tumour: Host physiology is important for the evaluation of tumour growth, British Journal of Cancer, 89 (2003), 22542263. 
[97] 
G. B. West, J. H. Brown and B. J. Enquist, A general model for ontogenetic growth, Nature, 413 (2001), 628631. 
[98] 
G. B. West, J. H. Brown and B. J. Enquist, A general model for the origin of allometric scaling laws in biology, Science, 276 (1997), 122126. 
[99] 
M. R. T. Yen, Y. C. Fung and N. Bingham, Elasticity of small pulmonary arteries in the cat, J. Biomech. Eng., 102 (1980), 170177. 
[100] 
M. R. T. Yen, F. Y. Zhuang, Y. C. Fung, H. H. Ho, H. Tremer and S. S. Sobin, Morphometry of the cat's pulmonary arteries, J. Biomech. Eng., 106 (1984), 131136. 
[101] 
M. Zamir, On fractal properties of arterial trees, J. Theor. Biol., 197 (1999), 517526. 
[102] 
M. Zamir, Fractal dimensions and multifractality in vascular branching, J. Theor. Biol., 212 (2001), 183190. 
[103] 
M. Zamir, "The Physics of Coronary Blood Flow," Springer, New York, 2005. 
[1] 
Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437497. doi: 10.3934/jmd.2014.8.437 
[2] 
Michael Barnsley, James Keesling, Mrinal Kanti Roychowdhury. Special issue on fractal geometry, dynamical systems, and their applications. Discrete and Continuous Dynamical Systems  S, 2019, 12 (8) : ii. doi: 10.3934/dcdss.201908i 
[3] 
Abdon Atangana, Ali Akgül. On solutions of fractal fractional differential equations. Discrete and Continuous Dynamical Systems  S, 2021, 14 (10) : 34413457. doi: 10.3934/dcdss.2020421 
[4] 
S. Aaron, Z. Conn, Robert S. Strichartz, H. Yu. Hodgede Rham theory on fractal graphs and fractals. Communications on Pure and Applied Analysis, 2014, 13 (2) : 903928. doi: 10.3934/cpaa.2014.13.903 
[5] 
Olivier Druet, Emmanuel Hebey and Frederic Robert. A $C^0$theory for the blowup of second order elliptic equations of critical Sobolev growth. Electronic Research Announcements, 2003, 9: 1925. 
[6] 
Penka Georgieva, Aleksey Zinger. Real orientations, real GromovWitten theory, and real enumerative geometry. Electronic Research Announcements, 2017, 24: 8799. doi: 10.3934/era.2017.24.010 
[7] 
Marzia Bisi, Laurent Desvillettes. Some remarks about the scaling of systems of reactive Boltzmann equations. Kinetic and Related Models, 2008, 1 (4) : 515520. doi: 10.3934/krm.2008.1.515 
[8] 
Jianwei Yang, Ruxu Lian, Shu Wang. Incompressible type euler as scaling limit of compressible EulerMaxwell equations. Communications on Pure and Applied Analysis, 2013, 12 (1) : 503518. doi: 10.3934/cpaa.2013.12.503 
[9] 
MarieFrançoise BidautVéron, Marta GarciaHuidobro, Laurent Véron. Radial solutions of scaling invariant nonlinear elliptic equations with mixed reaction terms. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 933982. doi: 10.3934/dcds.2020067 
[10] 
V. V. Chepyzhov, A. A. Ilyin. On the fractal dimension of invariant sets: Applications to NavierStokes equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 117135. doi: 10.3934/dcds.2004.10.117 
[11] 
Ali Akgül. Analysis and new applications of fractal fractional differential equations with power law kernel. Discrete and Continuous Dynamical Systems  S, 2021, 14 (10) : 34013417. doi: 10.3934/dcdss.2020423 
[12] 
Hiroyuki Hirayama, Mamoru Okamoto. Wellposedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure and Applied Analysis, 2016, 15 (3) : 831851. doi: 10.3934/cpaa.2016.15.831 
[13] 
Martin Oberlack, Andreas Rosteck. New statistical symmetries of the multipoint equations and its importance for turbulent scaling laws. Discrete and Continuous Dynamical Systems  S, 2010, 3 (3) : 451471. doi: 10.3934/dcdss.2010.3.451 
[14] 
JianJun Xu, Junichiro Shimizu. Asymptotic theory for disclike crystal growth (II): interfacial instability and pattern formation at early stage of growth. Communications on Pure and Applied Analysis, 2004, 3 (3) : 527543. doi: 10.3934/cpaa.2004.3.527 
[15] 
Ulrike Kant, Werner M. Seiler. Singularities in the geometric theory of differential equations. Conference Publications, 2011, 2011 (Special) : 784793. doi: 10.3934/proc.2011.2011.784 
[16] 
Neil S. Trudinger. On the local theory of prescribed Jacobian equations. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 16631681. doi: 10.3934/dcds.2014.34.1663 
[17] 
Vicenţiu D. Rădulescu. Noncoercive elliptic equations with subcritical growth. Discrete and Continuous Dynamical Systems  S, 2012, 5 (4) : 857864. doi: 10.3934/dcdss.2012.5.857 
[18] 
Dinh T. Tran, John A. G. Roberts. Linear degree growth in lattice equations. Journal of Computational Dynamics, 2019, 6 (2) : 449467. doi: 10.3934/jcd.2019023 
[19] 
Seda İğret Araz. New class of volterra integrodifferential equations with fractalfractional operators: Existence, uniqueness and numerical scheme. Discrete and Continuous Dynamical Systems  S, 2021, 14 (7) : 22972309. doi: 10.3934/dcdss.2021053 
[20] 
Nicolas Crouseilles, Mohammed Lemou. An asymptotic preserving scheme based on a micromacro decomposition for Collisional Vlasov equations: diffusion and highfield scaling limits. Kinetic and Related Models, 2011, 4 (2) : 441477. doi: 10.3934/krm.2011.4.441 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]