July  2013, 18(5): 1155-1188. doi: 10.3934/dcdsb.2013.18.1155

Constrained energy minimization and ground states for NLS with point defects

1. 

Dipartimento di Scienze Matematiche, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy

2. 

Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, via R. Cozzi 53, 20125 Milano, Italy

3. 

Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo, 56100 Pisa, Italy

Received  July 2012 Revised  January 2013 Published  March 2013

We investigate the ground states of the one-dimensional nonlinear Schrödinger equation with a defect located at a fixed point. The nonlinearity is focusing and consists of a subcritical power. The notion of ground state can be defined in several (often non-equivalent) ways. We define a ground state as a minimizer of the energy functional among the functions endowed with the same mass. This is the physically meaningful definition in the main fields of application of NLS. In this context we prove an abstract theorem that revisits the concentration-compactness method and which is suitable to treat NLS with inhomogeneities. Then we apply it to three models, describing three different kinds of defect: delta potential, delta prime interaction, and dipole. In the three cases we explicitly compute ground states and we show their orbital stability.
Citation: Riccardo Adami, Diego Noja, Nicola Visciglia. Constrained energy minimization and ground states for NLS with point defects. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1155-1188. doi: 10.3934/dcdsb.2013.18.1155
References:
[1]

R. Adami, C. Cacciapuoti, D. Finco and D. Noja, Fast solitons on star graphs,, Rev. Math. Phys., 23 (2011), 409.  doi: 10.1142/S0129055X11004345.  Google Scholar

[2]

R. Adami, C. Cacciapuoti, D. Finco and D. Noja, On the structure of critical energy levels for the cubic focusing NLS on star graphs,, J. Phys. A: Math. Theor., 45 (2012).  doi: 10.1088/1751-8113/45/19/192001.  Google Scholar

[3]

R. Adami, C. Cacciapuoti, D. Finco and D. Noja, Stationary states of NLS on star graphs,, EPL, 100 (2012).   Google Scholar

[4]

R. Adami and D. Noja, Existence of dynamics for a 1-d NLS equation perturbed with a generalized point defect,, J. Phys. A Math. Theor., 42 (2009).  doi: 10.1088/1751-8113/42/49/495302.  Google Scholar

[5]

R. Adami and D. Noja, Stability and symmetry breaking bifurcation for the ground states of a NLS equation with a $\delta'$ interaction,, Commun. Math. Phys., 318 (2013), 247.  doi: 10.1007/s00220-012-1597-6.  Google Scholar

[6]

R. Adami, D. Noja and A. Sacchetti, On the mathematical description of the effective behaviour of one-dimensional Bose-Einstein condensates with defects,, in, (2010).   Google Scholar

[7]

N. Akhiezer and I. Glazman, "Theory of Linear Operators in Hilbert Spaces,", Ungar, (1963).   Google Scholar

[8]

S. Albeverio, Z. Brzeźniak and L. Dabrowski, Fundamental solutions of the Heat and Schrödinger Equations with point interaction,, J. Func. An., 130 (1995), 220.  doi: 10.1006/jfan.1995.1068.  Google Scholar

[9]

S. Albeverio, F. Gesztesy, R. HΦgh-Krohn and H. Holden, "Solvable Models in Quantum Mechanics, $2^{nd}$ ed., with an Appendix of P. Exner,", AMS, (2005).   Google Scholar

[10]

S. Albeverio and P. Kurasov, "Singular Perturbations of Differential Operators,", Cambridge University Press, (2000).  doi: 10.1017/CBO9780511758904.  Google Scholar

[11]

J. Bellazzini and N. Visciglia, On the orbital stability for a class of nonautonmous NLS,, Indiana Univ. Math. J., 59 (2010), 1211.  doi: 10.1512/iumj.2010.59.3907.  Google Scholar

[12]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations, I - Existence of a ground state,, Arch. Rat. Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[13]

J. Blank, P. Exner and M. Havlicek, "Hilbert Spaces Operators in Quantum Physics,", Springer, (2008).   Google Scholar

[14]

C. Bonanno, M. Ghimenti and M. Squassina, Soliton dynamics of NLS with singular potentials,, preprint arXiv:1206.1832 (2012)., (2012).   Google Scholar

[15]

H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.2307/2044999.  Google Scholar

[16]

D. Cao Xiang and A. B. Malomed, Soliton defect collisions in the nonlinear Schr\"odinger equation,, Phys. Lett. A, 206 (1985), 177.  doi: 10.1016/0375-9601(95)00611-6.  Google Scholar

[17]

T. Cazenave, "Semilinear Schrödinger Equations,", 10 Courant Lecture Notes in Mathematics, 10 (2003).   Google Scholar

[18]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations,, Comm. Math. Phys., 85 (1982), 549.   Google Scholar

[19]

T. Cheon and T. Shigehara, Realizing discontinuous wave functions with renormalized short-range potentials,, Phys. Lett. A, 243 (1998), 111.   Google Scholar

[20]

K. Datchev and J. Holmer, Fast soliton scattering by attractive delta impurities,, Comm. Part. Diff. Eq., 34 (2009), 1074.  doi: 10.1080/03605300903076831.  Google Scholar

[21]

P. Deift and J. Park, Long-Time Asymptotics for solutions of the NLS equation with a delta potential and even initial data,, Int. Math. Res. Notices, 24 (2011), 5505.  doi: 10.1007/s11005-010-0458-5.  Google Scholar

[22]

P. Exner and P. Grosse, Some properties of the one-dimensional generalized point interactions (a torso),, preprint mp-arc 99-390, (1999), 99.   Google Scholar

[23]

P. Exner, H. Neidhardt and V. A. Zagrebnov, Potential approximations to a $\delta'$: An inverse Klauder phenomenon with norm-resolvent convergence,, Comm. Math. Phys., 224 (2001), 593.  doi: 10.1007/s002200100567.  Google Scholar

[24]

R. Fukuizumi and L. Jeanjean, Stability of standing waves for a nonlinear Schrödinger equation with a repulsive Dirac delta potential,, Disc. Cont. Dyn. Syst. (A), 21 (2008), 129.  doi: 10.3934/dcds.2008.21.121.  Google Scholar

[25]

R. Fukuizumi, M. Ohta and T. Ozawa, Nonlinear Schrödinger equation with a point defect,, Ann. Inst. H. Poincaré, 25 (2008), 837.  doi: 10.1016/j.anihpc.2007.03.004.  Google Scholar

[26]

Y. Furuhashi, M. Hirokawa, K. Nakahara and Y. Shikano, Role of a phase factor in the boundary condition of a one-dimensional junction,, J. Phys. A Math. Theor., 43 (2010).  doi: 10.1088/1751-8113/43/35/354010.  Google Scholar

[27]

Yu. D. Golovaty and R. O. Hryniv, On norm resolvent convergence of Schrödinger operators with $\delta'$-like potentials,, J. Phys. A. Math. Theor., 44 (2011).  doi: 10.1088/1751-8113/44/4/049802.  Google Scholar

[28]

R. H. Goodman, P. J. Holmes and M. I. Weinstein, Strong NLS soliton-defect interactions,, {Physica D.}, 192 (2004), 215.  doi: 10.1016/j.physd.2004.01.021.  Google Scholar

[29]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry - I,, J. Func. An., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[30]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry - II,, J. Func. An., 94 (1990), 308.  doi: 10.1016/0022-1236(90)90016-E.  Google Scholar

[31]

J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities,, Comm. Math. Phys., 274 (2007), 187.  doi: 10.1007/s00220-007-0261-z.  Google Scholar

[32]

J. Holmer and M. Zworski, Breathing patterns in nonlinear relaxation,, Nonlinearity, 22 (2009), 1259.  doi: 10.1088/0951-7715/22/6/002.  Google Scholar

[33]

S. Le Coz, R. Fukuizumi, G. Fibich, Y. Ksherim and Y. Sivan, Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential,, Physica D, 237 (2008), 1103.  doi: 10.1016/j.physd.2007.12.004.  Google Scholar

[34]

Y. Linzon, R. Morandotti, V. Aimez, V. Ares and S. Bar-Ad, Nonlinear scattering and trapping by local photonic potentials,, Phys. Rev. Lett., 99 (2007).   Google Scholar

[35]

F. Prinari and N. Visciglia, On a minimization problem involving the critical Sobolev exponent,, Advanced Nonlinear Studies, 7 (2007), 551.   Google Scholar

[36]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics - Vol I,", Academic Press, (1980).   Google Scholar

[37]

M. Weinstein, Modulational stability of ground states of nonlinear Schroedinger equations,, SIAM J. Math. Anal., 16 (1985), 472.  doi: 10.1137/0516034.  Google Scholar

[38]

M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations,, Comm. Pure Appl. Math., 39 (1986), 51.  doi: 10.1002/cpa.3160390103.  Google Scholar

[39]

D. Witthaut, S. Mossmann and H. J. Korsch, Bound and resonance states of the nonlinear Schrödinger equation in simple model systems,, J. Phys. A Math. Gen., 38 (2005), 1777.  doi: 10.1088/0305-4470/38/8/013.  Google Scholar

[40]

A. V. Zolotaryuk, P. L. Christiansen and S. V. Iermakova, Scattering properties of point dipole interactions,, J. Phys. A Math. Gen., 39 (2006), 9329.  doi: 10.1088/0305-4470/39/29/023.  Google Scholar

[41]

V. A. Zolotaryuk, Boundary conditions for the states with resonant tunnelling across the $\delta'$-potential,, Phys. Lett. A, 374 (2010), 1636.  doi: 10.1016/j.physleta.2010.02.005.  Google Scholar

show all references

References:
[1]

R. Adami, C. Cacciapuoti, D. Finco and D. Noja, Fast solitons on star graphs,, Rev. Math. Phys., 23 (2011), 409.  doi: 10.1142/S0129055X11004345.  Google Scholar

[2]

R. Adami, C. Cacciapuoti, D. Finco and D. Noja, On the structure of critical energy levels for the cubic focusing NLS on star graphs,, J. Phys. A: Math. Theor., 45 (2012).  doi: 10.1088/1751-8113/45/19/192001.  Google Scholar

[3]

R. Adami, C. Cacciapuoti, D. Finco and D. Noja, Stationary states of NLS on star graphs,, EPL, 100 (2012).   Google Scholar

[4]

R. Adami and D. Noja, Existence of dynamics for a 1-d NLS equation perturbed with a generalized point defect,, J. Phys. A Math. Theor., 42 (2009).  doi: 10.1088/1751-8113/42/49/495302.  Google Scholar

[5]

R. Adami and D. Noja, Stability and symmetry breaking bifurcation for the ground states of a NLS equation with a $\delta'$ interaction,, Commun. Math. Phys., 318 (2013), 247.  doi: 10.1007/s00220-012-1597-6.  Google Scholar

[6]

R. Adami, D. Noja and A. Sacchetti, On the mathematical description of the effective behaviour of one-dimensional Bose-Einstein condensates with defects,, in, (2010).   Google Scholar

[7]

N. Akhiezer and I. Glazman, "Theory of Linear Operators in Hilbert Spaces,", Ungar, (1963).   Google Scholar

[8]

S. Albeverio, Z. Brzeźniak and L. Dabrowski, Fundamental solutions of the Heat and Schrödinger Equations with point interaction,, J. Func. An., 130 (1995), 220.  doi: 10.1006/jfan.1995.1068.  Google Scholar

[9]

S. Albeverio, F. Gesztesy, R. HΦgh-Krohn and H. Holden, "Solvable Models in Quantum Mechanics, $2^{nd}$ ed., with an Appendix of P. Exner,", AMS, (2005).   Google Scholar

[10]

S. Albeverio and P. Kurasov, "Singular Perturbations of Differential Operators,", Cambridge University Press, (2000).  doi: 10.1017/CBO9780511758904.  Google Scholar

[11]

J. Bellazzini and N. Visciglia, On the orbital stability for a class of nonautonmous NLS,, Indiana Univ. Math. J., 59 (2010), 1211.  doi: 10.1512/iumj.2010.59.3907.  Google Scholar

[12]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations, I - Existence of a ground state,, Arch. Rat. Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[13]

J. Blank, P. Exner and M. Havlicek, "Hilbert Spaces Operators in Quantum Physics,", Springer, (2008).   Google Scholar

[14]

C. Bonanno, M. Ghimenti and M. Squassina, Soliton dynamics of NLS with singular potentials,, preprint arXiv:1206.1832 (2012)., (2012).   Google Scholar

[15]

H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.2307/2044999.  Google Scholar

[16]

D. Cao Xiang and A. B. Malomed, Soliton defect collisions in the nonlinear Schr\"odinger equation,, Phys. Lett. A, 206 (1985), 177.  doi: 10.1016/0375-9601(95)00611-6.  Google Scholar

[17]

T. Cazenave, "Semilinear Schrödinger Equations,", 10 Courant Lecture Notes in Mathematics, 10 (2003).   Google Scholar

[18]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations,, Comm. Math. Phys., 85 (1982), 549.   Google Scholar

[19]

T. Cheon and T. Shigehara, Realizing discontinuous wave functions with renormalized short-range potentials,, Phys. Lett. A, 243 (1998), 111.   Google Scholar

[20]

K. Datchev and J. Holmer, Fast soliton scattering by attractive delta impurities,, Comm. Part. Diff. Eq., 34 (2009), 1074.  doi: 10.1080/03605300903076831.  Google Scholar

[21]

P. Deift and J. Park, Long-Time Asymptotics for solutions of the NLS equation with a delta potential and even initial data,, Int. Math. Res. Notices, 24 (2011), 5505.  doi: 10.1007/s11005-010-0458-5.  Google Scholar

[22]

P. Exner and P. Grosse, Some properties of the one-dimensional generalized point interactions (a torso),, preprint mp-arc 99-390, (1999), 99.   Google Scholar

[23]

P. Exner, H. Neidhardt and V. A. Zagrebnov, Potential approximations to a $\delta'$: An inverse Klauder phenomenon with norm-resolvent convergence,, Comm. Math. Phys., 224 (2001), 593.  doi: 10.1007/s002200100567.  Google Scholar

[24]

R. Fukuizumi and L. Jeanjean, Stability of standing waves for a nonlinear Schrödinger equation with a repulsive Dirac delta potential,, Disc. Cont. Dyn. Syst. (A), 21 (2008), 129.  doi: 10.3934/dcds.2008.21.121.  Google Scholar

[25]

R. Fukuizumi, M. Ohta and T. Ozawa, Nonlinear Schrödinger equation with a point defect,, Ann. Inst. H. Poincaré, 25 (2008), 837.  doi: 10.1016/j.anihpc.2007.03.004.  Google Scholar

[26]

Y. Furuhashi, M. Hirokawa, K. Nakahara and Y. Shikano, Role of a phase factor in the boundary condition of a one-dimensional junction,, J. Phys. A Math. Theor., 43 (2010).  doi: 10.1088/1751-8113/43/35/354010.  Google Scholar

[27]

Yu. D. Golovaty and R. O. Hryniv, On norm resolvent convergence of Schrödinger operators with $\delta'$-like potentials,, J. Phys. A. Math. Theor., 44 (2011).  doi: 10.1088/1751-8113/44/4/049802.  Google Scholar

[28]

R. H. Goodman, P. J. Holmes and M. I. Weinstein, Strong NLS soliton-defect interactions,, {Physica D.}, 192 (2004), 215.  doi: 10.1016/j.physd.2004.01.021.  Google Scholar

[29]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry - I,, J. Func. An., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[30]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry - II,, J. Func. An., 94 (1990), 308.  doi: 10.1016/0022-1236(90)90016-E.  Google Scholar

[31]

J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities,, Comm. Math. Phys., 274 (2007), 187.  doi: 10.1007/s00220-007-0261-z.  Google Scholar

[32]

J. Holmer and M. Zworski, Breathing patterns in nonlinear relaxation,, Nonlinearity, 22 (2009), 1259.  doi: 10.1088/0951-7715/22/6/002.  Google Scholar

[33]

S. Le Coz, R. Fukuizumi, G. Fibich, Y. Ksherim and Y. Sivan, Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential,, Physica D, 237 (2008), 1103.  doi: 10.1016/j.physd.2007.12.004.  Google Scholar

[34]

Y. Linzon, R. Morandotti, V. Aimez, V. Ares and S. Bar-Ad, Nonlinear scattering and trapping by local photonic potentials,, Phys. Rev. Lett., 99 (2007).   Google Scholar

[35]

F. Prinari and N. Visciglia, On a minimization problem involving the critical Sobolev exponent,, Advanced Nonlinear Studies, 7 (2007), 551.   Google Scholar

[36]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics - Vol I,", Academic Press, (1980).   Google Scholar

[37]

M. Weinstein, Modulational stability of ground states of nonlinear Schroedinger equations,, SIAM J. Math. Anal., 16 (1985), 472.  doi: 10.1137/0516034.  Google Scholar

[38]

M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations,, Comm. Pure Appl. Math., 39 (1986), 51.  doi: 10.1002/cpa.3160390103.  Google Scholar

[39]

D. Witthaut, S. Mossmann and H. J. Korsch, Bound and resonance states of the nonlinear Schrödinger equation in simple model systems,, J. Phys. A Math. Gen., 38 (2005), 1777.  doi: 10.1088/0305-4470/38/8/013.  Google Scholar

[40]

A. V. Zolotaryuk, P. L. Christiansen and S. V. Iermakova, Scattering properties of point dipole interactions,, J. Phys. A Math. Gen., 39 (2006), 9329.  doi: 10.1088/0305-4470/39/29/023.  Google Scholar

[41]

V. A. Zolotaryuk, Boundary conditions for the states with resonant tunnelling across the $\delta'$-potential,, Phys. Lett. A, 374 (2010), 1636.  doi: 10.1016/j.physleta.2010.02.005.  Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[2]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[3]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[4]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[6]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[7]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[8]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[9]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[10]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[11]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[12]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[13]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[14]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[15]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[16]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[17]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[18]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[19]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[20]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]