Citation: |
[1] |
R. Adami, C. Cacciapuoti, D. Finco and D. Noja, Fast solitons on star graphs, Rev. Math. Phys., 23 (2011), 409-451.doi: 10.1142/S0129055X11004345. |
[2] |
R. Adami, C. Cacciapuoti, D. Finco and D. Noja, On the structure of critical energy levels for the cubic focusing NLS on star graphs, J. Phys. A: Math. Theor., 45 (2012), 7pp. 192001.doi: 10.1088/1751-8113/45/19/192001. |
[3] |
R. Adami, C. Cacciapuoti, D. Finco and D. Noja, Stationary states of NLS on star graphs, EPL, 100 (2012), 10003. |
[4] |
R. Adami and D. Noja, Existence of dynamics for a 1-d NLS equation perturbed with a generalized point defect, J. Phys. A Math. Theor., 42 (2009), 495302.doi: 10.1088/1751-8113/42/49/495302. |
[5] |
R. Adami and D. Noja, Stability and symmetry breaking bifurcation for the ground states of a NLS equation with a $\delta'$ interaction, Commun. Math. Phys., 318 (2013), 247-289.doi: 10.1007/s00220-012-1597-6. |
[6] |
R. Adami, D. Noja and A. Sacchetti, On the mathematical description of the effective behaviour of one-dimensional Bose-Einstein condensates with defects, in "Bose-Einstein Condensates: Theory, Characteristics, and Current Research", Nova Publishing, New York (2010). |
[7] |
N. Akhiezer and I. Glazman, "Theory of Linear Operators in Hilbert Spaces," Ungar, New York, 1963. |
[8] |
S. Albeverio, Z. Brzeźniak and L. Dabrowski, Fundamental solutions of the Heat and Schrödinger Equations with point interaction, J. Func. An., 130 (1995), 220-254.doi: 10.1006/jfan.1995.1068. |
[9] |
S. Albeverio, F. Gesztesy, R. HΦgh-Krohn and H. Holden, "Solvable Models in Quantum Mechanics, $2^{nd}$ ed., with an Appendix of P. Exner," AMS, Providence, 2005. |
[10] |
S. Albeverio and P. Kurasov, "Singular Perturbations of Differential Operators," Cambridge University Press, 2000.doi: 10.1017/CBO9780511758904. |
[11] |
J. Bellazzini and N. Visciglia, On the orbital stability for a class of nonautonmous NLS, Indiana Univ. Math. J., 59 (2010), 1211-1230.doi: 10.1512/iumj.2010.59.3907. |
[12] |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations, I - Existence of a ground state, Arch. Rat. Mech. Anal., 82 (1983), 313-345.doi: 10.1007/BF00250555. |
[13] |
J. Blank, P. Exner and M. Havlicek, "Hilbert Spaces Operators in Quantum Physics," Springer, New York, 2008. |
[14] |
C. Bonanno, M. Ghimenti and M. Squassina, Soliton dynamics of NLS with singular potentials, preprint arXiv:1206.1832 (2012). |
[15] |
H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.doi: 10.2307/2044999. |
[16] |
D. Cao Xiang and A. B. Malomed, Soliton defect collisions in the nonlinear Schr\"odinger equation, Phys. Lett. A, 206 (1985), 177-182.doi: 10.1016/0375-9601(95)00611-6. |
[17] |
T. Cazenave, "Semilinear Schrödinger Equations," 10 Courant Lecture Notes in Mathematics, AMS, Providence, 2003. |
[18] |
T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561. |
[19] |
T. Cheon and T. Shigehara, Realizing discontinuous wave functions with renormalized short-range potentials, Phys. Lett. A, 243 (1998), 111-116. |
[20] |
K. Datchev and J. Holmer, Fast soliton scattering by attractive delta impurities, Comm. Part. Diff. Eq., 34 (2009), 1074-1113.doi: 10.1080/03605300903076831. |
[21] |
P. Deift and J. Park, Long-Time Asymptotics for solutions of the NLS equation with a delta potential and even initial data, Int. Math. Res. Notices, 24 (2011), 5505-5624.doi: 10.1007/s11005-010-0458-5. |
[22] |
P. Exner and P. Grosse, Some properties of the one-dimensional generalized point interactions (a torso), preprint mp-arc 99-390, arXiv:math-ph/9910029, (1999). |
[23] |
P. Exner, H. Neidhardt and V. A. Zagrebnov, Potential approximations to a $\delta'$: An inverse Klauder phenomenon with norm-resolvent convergence, Comm. Math. Phys., 224 (2001), 593-612.doi: 10.1007/s002200100567. |
[24] |
R. Fukuizumi and L. Jeanjean, Stability of standing waves for a nonlinear Schrödinger equation with a repulsive Dirac delta potential, Disc. Cont. Dyn. Syst. (A), 21 (2008), 129-144.doi: 10.3934/dcds.2008.21.121. |
[25] |
R. Fukuizumi, M. Ohta and T. Ozawa, Nonlinear Schrödinger equation with a point defect, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 25 (2008), 837-845.doi: 10.1016/j.anihpc.2007.03.004. |
[26] |
Y. Furuhashi, M. Hirokawa, K. Nakahara and Y. Shikano, Role of a phase factor in the boundary condition of a one-dimensional junction, J. Phys. A Math. Theor., 43 (2010), 354010.doi: 10.1088/1751-8113/43/35/354010. |
[27] |
Yu. D. Golovaty and R. O. Hryniv, On norm resolvent convergence of Schrödinger operators with $\delta'$-like potentials, J. Phys. A. Math. Theor., 44 (2011), 049802; Corrigendum J. Phys. A. Math. Theor., 44 (2011), 049802.doi: 10.1088/1751-8113/44/4/049802. |
[28] |
R. H. Goodman, P. J. Holmes and M. I. Weinstein, Strong NLS soliton-defect interactions, {Physica D.}, 192 (2004), 215-248.doi: 10.1016/j.physd.2004.01.021. |
[29] |
M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry - I, J. Func. An., 74 (1987), 160-197.doi: 10.1016/0022-1236(87)90044-9. |
[30] |
M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry - II, J. Func. An., 94 (1990), 308-348.doi: 10.1016/0022-1236(90)90016-E. |
[31] |
J. Holmer, J. Marzuola and M. Zworski, Fast soliton scattering by delta impurities, Comm. Math. Phys., 274 (2007), 187-216.doi: 10.1007/s00220-007-0261-z. |
[32] |
J. Holmer and M. Zworski, Breathing patterns in nonlinear relaxation, Nonlinearity, 22 (2009), 1259-1301.doi: 10.1088/0951-7715/22/6/002. |
[33] |
S. Le Coz, R. Fukuizumi, G. Fibich, Y. Ksherim and Y. Sivan, Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential, Physica D, 237 (2008), 1103-1128.doi: 10.1016/j.physd.2007.12.004. |
[34] |
Y. Linzon, R. Morandotti, V. Aimez, V. Ares and S. Bar-Ad, Nonlinear scattering and trapping by local photonic potentials, Phys. Rev. Lett., 99 (2007), 133901. |
[35] |
F. Prinari and N. Visciglia, On a minimization problem involving the critical Sobolev exponent, Advanced Nonlinear Studies, 7 (2007), 551-564. |
[36] |
M. Reed and B. Simon, "Methods of Modern Mathematical Physics - Vol I," Academic Press, 1980. |
[37] |
M. Weinstein, Modulational stability of ground states of nonlinear Schroedinger equations, SIAM J. Math. Anal., 16 (1985), 472-491.doi: 10.1137/0516034. |
[38] |
M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), 51-68.doi: 10.1002/cpa.3160390103. |
[39] |
D. Witthaut, S. Mossmann and H. J. Korsch, Bound and resonance states of the nonlinear Schrödinger equation in simple model systems, J. Phys. A Math. Gen., 38 (2005), 1777-1702.doi: 10.1088/0305-4470/38/8/013. |
[40] |
A. V. Zolotaryuk, P. L. Christiansen and S. V. Iermakova, Scattering properties of point dipole interactions, J. Phys. A Math. Gen., 39 (2006), 9329-9338.doi: 10.1088/0305-4470/39/29/023. |
[41] |
V. A. Zolotaryuk, Boundary conditions for the states with resonant tunnelling across the $\delta'$-potential, Phys. Lett. A, 374 (2010), 1636-1641.doi: 10.1016/j.physleta.2010.02.005. |