July  2013, 18(5): 1217-1251. doi: 10.3934/dcdsb.2013.18.1217

The existence of weak solutions to immiscible compressible two-phase flow in porous media: The case of fields with different rock-types

1. 

Laboratoire de Mathématiques et de leurs Applications, CNRS-UMR 5142, Université de Pau, Av. de l’Université, 64000 Pau

2. 

Department of Mathematics, B.Verkin Institute for Low Temperature Physics and Engineering, 47, av. Lenin, 61103, Kharkov

3. 

Narvik University College, Postbox 385, Narvik, 8505

Received  September 2011 Revised  December 2012 Published  March 2013

We study a model describing immiscible, compressible two-phase flow, such as water-gas, through heterogeneous porous media taking into account capillary and gravity effects. We will consider a domain made up of several zones with different characteristics: porosity, absolute permeability, relative permeabilities and capillary pressure curves. This process can be formulated as a coupled system of partial differential equations which includes a nonlinear parabolic pressure equation and a nonlinear degenerate diffusion-convection saturation equation. Moreover the transmission conditions are nonlinear and the saturation is discontinuous at interfaces separating different media. There are two kinds of degeneracy in the studied system: the first one is the degeneracy of the capillary diffusion term in the saturation equation, and the second one appears in the evolution term of the pressure equation. Under some realistic assumptions on the data, we show the existence of weak solutions with the help of an appropriate regularization and a time discretization. We use suitable test functions to obtain a priori estimates. We prove a new compactness result in order to pass to the limit in nonlinear terms. This passage to the limit is nontrivial due to the degeneracy of the system.
Citation: Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. The existence of weak solutions to immiscible compressible two-phase flow in porous media: The case of fields with different rock-types. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1217-1251. doi: 10.3934/dcdsb.2013.18.1217
References:
[1]

H. W. Alt and E. Di Benedetto, Nonsteady flow of water and oil through inhomogeneous porous media,, Ann. Scu. Norm. Sup. Pisa Cl. Sci., 12 (1985), 335.   Google Scholar

[2]

H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations,, Math. Z., 3 (1983), 311.  doi: 10.1007/BF01176474.  Google Scholar

[3]

B. Amaziane, S. Antontsev, L. Pankratov and A. Piatnitski, Homogenization of immiscible compressible two-phase flow in porous media: Application to gas migration in a nuclear waste repository,, SIAM J. Multiscale Model. Simul., 8 (2010), 2023.  doi: 10.1137/100790215.  Google Scholar

[4]

B. Amaziane and M. Jurak, A new formulation of immiscible compressible two-phase flow in porous media,, C. R. Mécanique, 336 (2008), 600.   Google Scholar

[5]

B. Amaziane, M. Jurak and A. Žgaljić-Keko, Modeling and numerical simulations of immiscible compressible two-phase flow in porous media by the concept of global pressure,, Transport in Porous Media, 84 (2010), 133.  doi: 10.1007/s11242-009-9489-8.  Google Scholar

[6]

B. Amaziane, M. Jurak and A. Žgaljić-Keko, An existence result for a coupled system modeling a fully equivalent global pressure formulation for immiscible compressible two-phase flow in porous media,, J. Differential Equations, 250 (2011), 1685.  doi: 10.1016/j.jde.2010.09.008.  Google Scholar

[7]

Y. Amirat, K. Hamdache and A. Ziani, Mathematical analysis for compressible miscible displacement models in porous media,, Math. Models Methods Appl. Sci., 6 (1996), 729.  doi: 10.1142/S0218202596000316.  Google Scholar

[8]

Y. Amirat and M. Moussaoui, Analysis of a one-dimensional model for compressible miscible displacement in porous media,, SIAM J. Math. Anal., 26 (1995), 659.  doi: 10.1137/S003614109223297X.  Google Scholar

[9]

Y. Amirat and V. Shelukhin, Global weak solutions to equations of compressible miscible flows in porous media,, SIAM J. Math. Anal., 38 (2007), 1825.  doi: 10.1137/050640321.  Google Scholar

[10]

ANDRA, Couplex-Gas Benchmark, 2006., Available online at: , ().   Google Scholar

[11]

S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, "Boundary Value Problems in Mechanics of Nonhomogeneous Fluids,", North-Holland, (1990).   Google Scholar

[12]

T. Arbogast, The existence of weak solutions to single-porosity and simple dual-porosity models of two-phase incompressible flow,, Nonlinear Anal., 19 (1992), 1009.  doi: 10.1016/0362-546X(92)90121-T.  Google Scholar

[13]

J. Bear and Y. Bachmat, "Introduction to Modeling of Transport Phenomena in Porous Media,", Kluwer Academic Publishers, (1991).   Google Scholar

[14]

A. Bourgeat and A. Hidani, A result of existence for a model of two-phase flow in a porous medium made of different rock types,, Appl. Anal., 56 (1995), 381.  doi: 10.1080/00036819508840332.  Google Scholar

[15]

G. Chavent and J. Jaffré, "Mathematical Models and Finite Elements for Reservoir Simulation,", North-Holland, (1986).   Google Scholar

[16]

Z. Chen, Degenerate two-phase incompressible flow I: Existence, uniqueness and regularity of a weak solution,, J. Differential Equations, 171 (2001), 203.  doi: 10.1006/jdeq.2000.3848.  Google Scholar

[17]

Z. Chen and G. Huan and Y. Ma, "Computational Methods for Multiphase Flows in Porous Media,", SIAM, (2006).  doi: 10.1137/1.9780898718942.  Google Scholar

[18]

C. Choquet, On a fully coupled nonlinear parabolic problem modelling miscible compressible displacement in porous media,, J. Math. Anal. Appl., 339 (2008), 1112.  doi: 10.1016/j.jmaa.2007.07.037.  Google Scholar

[19]

F. Z. Daïm, R. Eymard and D. Hilhorst, Existence of a solution for two phase flow in porous media: The case that the porosity depends on the pressure,, J. Math. Anal. Appl., 326 (2007), 332.  doi: 10.1016/j.jmaa.2006.02.082.  Google Scholar

[20]

B. K. Fadimba, On existence and uniqueness for a coupled system modeling immiscible flow through a porous medium,, J. Math. Anal. Appl., 328 (2007), 1034.  doi: 10.1016/j.jmaa.2006.06.012.  Google Scholar

[21]

G. Gagneux and M. Madaune-Tort, "Analyse Mathématique de Modèles Non Linéaires de l'Ingénierie Pétrolière,", Springer-Verlag, (1996).   Google Scholar

[22]

X. Feng, Strong solutions to a nonlinear parabolic system modeling compressible miscible displacement in porous media,, Nonlinear Anal., 23 (1994), 1515.  doi: 10.1016/0362-546X(94)90202-X.  Google Scholar

[23]

C. Galusinski and M. Saad, On a degenerate parabolic system for compressible, immiscible, two-phase flows in porous media,, Adv. Differential Equations, 9 (2004), 1235.   Google Scholar

[24]

C. Galusinski and M. Saad, Water-gas flow in porous media,, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 281.   Google Scholar

[25]

C. Galusinski and M. Saad, Two compressible immiscible fluids in porous media,, J. Differential Equations, 244 (2008), 1741.  doi: 10.1016/j.jde.2008.01.013.  Google Scholar

[26]

C. Galusinski and M. Saad, Weak solutions for immiscible compressible multifluid flows in porous media,, C. R. Acad. Sci. Paris, 347 (2009), 249.  doi: 10.1016/j.crma.2009.01.023.  Google Scholar

[27]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1983).   Google Scholar

[28]

R. Helmig, "Multiphase Flow and Transport Trocesses in the Subsurface,", Springer, (1997).   Google Scholar

[29]

Z. Khalil and M. Saad, Solutions to a model for compressible immiscible two phase flow in porous media,, Electronic Journal of Differential Equations, 122 (2010), 1.   Google Scholar

[30]

Z. Khalil and M. Saad, On a fully nonlinear degenerate parabolic system modeling immiscible gas-water displacement in porous media,, Nonlinear Analysis: Real World Applications, 12 (2011), 1591.  doi: 10.1016/j.nonrwa.2010.10.015.  Google Scholar

[31]

D. Kröner and S. Luckhaus, Flow of oil and water in a porous medium,, J. Differential Equations, 55 (1984), 276.  doi: 10.1016/0022-0396(84)90084-6.  Google Scholar

[32]

A. Mikelić, An existence result for the equations describing a gas-liquid two-phase flow,, C. R. Mécanique, 337 (2009), 226.   Google Scholar

[33]

OECD/NEA, Safety of geological disposal of high-level and long-lived radioactive waste in France,, An International Peer Review of the, (2006).   Google Scholar

[34]

J. Simon, Compact sets in the space $L^p(0,t; B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

[35]

F. Smaï, A model of multiphase flow and transport in porous media applied to gas migration in underground nuclear waste repository,, C. R. Math. Acad. Sci. Paris, 347 (2009), 527.  doi: 10.1016/j.crma.2009.03.011.  Google Scholar

[36]

F. Smaï, Existence of solutions for a model of multiphase flow in porous media applied to gas migration in underground nuclear waste repository,, Appl. Anal., 88 (2009), 1609.  doi: 10.1080/00036810902942226.  Google Scholar

[37]

L. M. Yeh, On two-phase flow in fractured media,, Math. Models Methods Appl. Sci., 12 (2002), 1075.  doi: 10.1142/S0218202502002045.  Google Scholar

[38]

L. M. Yeh, Hölder continuity for two-phase flows in porous media,, Math. Methods Appl. Sci., 29 (2006), 1261.  doi: 10.1002/mma.724.  Google Scholar

show all references

References:
[1]

H. W. Alt and E. Di Benedetto, Nonsteady flow of water and oil through inhomogeneous porous media,, Ann. Scu. Norm. Sup. Pisa Cl. Sci., 12 (1985), 335.   Google Scholar

[2]

H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations,, Math. Z., 3 (1983), 311.  doi: 10.1007/BF01176474.  Google Scholar

[3]

B. Amaziane, S. Antontsev, L. Pankratov and A. Piatnitski, Homogenization of immiscible compressible two-phase flow in porous media: Application to gas migration in a nuclear waste repository,, SIAM J. Multiscale Model. Simul., 8 (2010), 2023.  doi: 10.1137/100790215.  Google Scholar

[4]

B. Amaziane and M. Jurak, A new formulation of immiscible compressible two-phase flow in porous media,, C. R. Mécanique, 336 (2008), 600.   Google Scholar

[5]

B. Amaziane, M. Jurak and A. Žgaljić-Keko, Modeling and numerical simulations of immiscible compressible two-phase flow in porous media by the concept of global pressure,, Transport in Porous Media, 84 (2010), 133.  doi: 10.1007/s11242-009-9489-8.  Google Scholar

[6]

B. Amaziane, M. Jurak and A. Žgaljić-Keko, An existence result for a coupled system modeling a fully equivalent global pressure formulation for immiscible compressible two-phase flow in porous media,, J. Differential Equations, 250 (2011), 1685.  doi: 10.1016/j.jde.2010.09.008.  Google Scholar

[7]

Y. Amirat, K. Hamdache and A. Ziani, Mathematical analysis for compressible miscible displacement models in porous media,, Math. Models Methods Appl. Sci., 6 (1996), 729.  doi: 10.1142/S0218202596000316.  Google Scholar

[8]

Y. Amirat and M. Moussaoui, Analysis of a one-dimensional model for compressible miscible displacement in porous media,, SIAM J. Math. Anal., 26 (1995), 659.  doi: 10.1137/S003614109223297X.  Google Scholar

[9]

Y. Amirat and V. Shelukhin, Global weak solutions to equations of compressible miscible flows in porous media,, SIAM J. Math. Anal., 38 (2007), 1825.  doi: 10.1137/050640321.  Google Scholar

[10]

ANDRA, Couplex-Gas Benchmark, 2006., Available online at: , ().   Google Scholar

[11]

S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, "Boundary Value Problems in Mechanics of Nonhomogeneous Fluids,", North-Holland, (1990).   Google Scholar

[12]

T. Arbogast, The existence of weak solutions to single-porosity and simple dual-porosity models of two-phase incompressible flow,, Nonlinear Anal., 19 (1992), 1009.  doi: 10.1016/0362-546X(92)90121-T.  Google Scholar

[13]

J. Bear and Y. Bachmat, "Introduction to Modeling of Transport Phenomena in Porous Media,", Kluwer Academic Publishers, (1991).   Google Scholar

[14]

A. Bourgeat and A. Hidani, A result of existence for a model of two-phase flow in a porous medium made of different rock types,, Appl. Anal., 56 (1995), 381.  doi: 10.1080/00036819508840332.  Google Scholar

[15]

G. Chavent and J. Jaffré, "Mathematical Models and Finite Elements for Reservoir Simulation,", North-Holland, (1986).   Google Scholar

[16]

Z. Chen, Degenerate two-phase incompressible flow I: Existence, uniqueness and regularity of a weak solution,, J. Differential Equations, 171 (2001), 203.  doi: 10.1006/jdeq.2000.3848.  Google Scholar

[17]

Z. Chen and G. Huan and Y. Ma, "Computational Methods for Multiphase Flows in Porous Media,", SIAM, (2006).  doi: 10.1137/1.9780898718942.  Google Scholar

[18]

C. Choquet, On a fully coupled nonlinear parabolic problem modelling miscible compressible displacement in porous media,, J. Math. Anal. Appl., 339 (2008), 1112.  doi: 10.1016/j.jmaa.2007.07.037.  Google Scholar

[19]

F. Z. Daïm, R. Eymard and D. Hilhorst, Existence of a solution for two phase flow in porous media: The case that the porosity depends on the pressure,, J. Math. Anal. Appl., 326 (2007), 332.  doi: 10.1016/j.jmaa.2006.02.082.  Google Scholar

[20]

B. K. Fadimba, On existence and uniqueness for a coupled system modeling immiscible flow through a porous medium,, J. Math. Anal. Appl., 328 (2007), 1034.  doi: 10.1016/j.jmaa.2006.06.012.  Google Scholar

[21]

G. Gagneux and M. Madaune-Tort, "Analyse Mathématique de Modèles Non Linéaires de l'Ingénierie Pétrolière,", Springer-Verlag, (1996).   Google Scholar

[22]

X. Feng, Strong solutions to a nonlinear parabolic system modeling compressible miscible displacement in porous media,, Nonlinear Anal., 23 (1994), 1515.  doi: 10.1016/0362-546X(94)90202-X.  Google Scholar

[23]

C. Galusinski and M. Saad, On a degenerate parabolic system for compressible, immiscible, two-phase flows in porous media,, Adv. Differential Equations, 9 (2004), 1235.   Google Scholar

[24]

C. Galusinski and M. Saad, Water-gas flow in porous media,, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 281.   Google Scholar

[25]

C. Galusinski and M. Saad, Two compressible immiscible fluids in porous media,, J. Differential Equations, 244 (2008), 1741.  doi: 10.1016/j.jde.2008.01.013.  Google Scholar

[26]

C. Galusinski and M. Saad, Weak solutions for immiscible compressible multifluid flows in porous media,, C. R. Acad. Sci. Paris, 347 (2009), 249.  doi: 10.1016/j.crma.2009.01.023.  Google Scholar

[27]

D. Gilbarg and N. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1983).   Google Scholar

[28]

R. Helmig, "Multiphase Flow and Transport Trocesses in the Subsurface,", Springer, (1997).   Google Scholar

[29]

Z. Khalil and M. Saad, Solutions to a model for compressible immiscible two phase flow in porous media,, Electronic Journal of Differential Equations, 122 (2010), 1.   Google Scholar

[30]

Z. Khalil and M. Saad, On a fully nonlinear degenerate parabolic system modeling immiscible gas-water displacement in porous media,, Nonlinear Analysis: Real World Applications, 12 (2011), 1591.  doi: 10.1016/j.nonrwa.2010.10.015.  Google Scholar

[31]

D. Kröner and S. Luckhaus, Flow of oil and water in a porous medium,, J. Differential Equations, 55 (1984), 276.  doi: 10.1016/0022-0396(84)90084-6.  Google Scholar

[32]

A. Mikelić, An existence result for the equations describing a gas-liquid two-phase flow,, C. R. Mécanique, 337 (2009), 226.   Google Scholar

[33]

OECD/NEA, Safety of geological disposal of high-level and long-lived radioactive waste in France,, An International Peer Review of the, (2006).   Google Scholar

[34]

J. Simon, Compact sets in the space $L^p(0,t; B)$,, Ann. Mat. Pura Appl., 146 (1987), 65.  doi: 10.1007/BF01762360.  Google Scholar

[35]

F. Smaï, A model of multiphase flow and transport in porous media applied to gas migration in underground nuclear waste repository,, C. R. Math. Acad. Sci. Paris, 347 (2009), 527.  doi: 10.1016/j.crma.2009.03.011.  Google Scholar

[36]

F. Smaï, Existence of solutions for a model of multiphase flow in porous media applied to gas migration in underground nuclear waste repository,, Appl. Anal., 88 (2009), 1609.  doi: 10.1080/00036810902942226.  Google Scholar

[37]

L. M. Yeh, On two-phase flow in fractured media,, Math. Models Methods Appl. Sci., 12 (2002), 1075.  doi: 10.1142/S0218202502002045.  Google Scholar

[38]

L. M. Yeh, Hölder continuity for two-phase flows in porous media,, Math. Methods Appl. Sci., 29 (2006), 1261.  doi: 10.1002/mma.724.  Google Scholar

[1]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[2]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[3]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279

[4]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[5]

Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265

[6]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[7]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[8]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[9]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[10]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[11]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[12]

Sze-Bi Hsu, Yu Jin. The dynamics of a two host-two virus system in a chemostat environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 415-441. doi: 10.3934/dcdsb.2020298

[13]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[14]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[15]

Yong-Jung Kim, Hyowon Seo, Changwook Yoon. Asymmetric dispersal and evolutional selection in two-patch system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3571-3593. doi: 10.3934/dcds.2020043

[16]

Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031

[17]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[18]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282

[19]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[20]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (6)

[Back to Top]