• Previous Article
    Finite-time quenching of competing species with constrained boundary evaporation
  • DCDS-B Home
  • This Issue
  • Next Article
    The existence of weak solutions to immiscible compressible two-phase flow in porous media: The case of fields with different rock-types
July  2013, 18(5): 1253-1273. doi: 10.3934/dcdsb.2013.18.1253

Analysis and numerical approximations of equations of nonlinear poroelasticity

1. 

Department of Mathematics & Statistics, Auburn University, Auburn, AL 36849, United States, United States

Received  August 2012 Revised  January 2013 Published  March 2013

The equations of quasi-static poroelasticity which model flow through elastic porous media are considered. It is assumed that the hydraulic conductivity depends nonlinearly on the displacement (the dilatation) of the medium. The existence of a weak solution is proved using the modified Rothe's method. Numerical approximations of solutions by the finite element method are considered. Error estimates are obtained and numerical experiments are conducted to illustrate the theoretical results, and the efficiency and accuracy of the numerical method.
Citation: Yanzhao Cao, Song Chen, A. J. Meir. Analysis and numerical approximations of equations of nonlinear poroelasticity. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1253-1273. doi: 10.3934/dcdsb.2013.18.1253
References:
[1]

Jean-Louis Auriault, Claude Boutin and Christian Geindreau, "Homogenization of Coupled Phenomena in Hetrogenous Media,", ISTE Ltd., (2009).   Google Scholar

[2]

H. Bryne and L. Preziosi, Modeling solid tumour growth using the theory of mixtures,, Mathematical Medicine and Biology, 20 (2003), 341.   Google Scholar

[3]

P. C. Carman, Permeability of saturated sands, soils and clays,, Journal of Agricultural Science, 29 (1939), 263.   Google Scholar

[4]

Robert Wayne Carroll and Ralph E. Showalter, "Singular and Degenerate Cauchy Problems,", Academic Press [Harcourt Brace Jovanovich Publishers], 127 (1976).   Google Scholar

[5]

Olivier Coussy, "Poromechanics,", John Wiley & Sons Ltd., (2004).   Google Scholar

[6]

Olivier Coussy, "Mechanics and Physics of Porous Solids,", John Wiley & Sons Ltd., (2010).   Google Scholar

[7]

Alexandre Ern and Sébastien Meunier, A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems,, M2AN Math. Model. Numer. Anal., 43 (2009), 353.  doi: 10.1051/m2an:2008048.  Google Scholar

[8]

Lawrence C. Evans, "Partial Differential Equations,", 19 of Graduate Studies in Mathematics. American Mathematical Society, 19 (2010).   Google Scholar

[9]

F. J. Gaspar, F. J. Lisbona and P. N. Vabishchevich, Finite difference schemes for poro-elastic problems,, Comput. Methods Appl. Math., 2 (2002), 132.   Google Scholar

[10]

F. J. Gaspar, F. J. Lisbona and P. N. Vabishchevich, A finite difference analysis of Biot's consolidation model,, Appl. Numer. Math., 44 (2003), 487.  doi: 10.1016/S0168-9274(02)00190-3.  Google Scholar

[11]

Vivette Girault and Pierre-Arnaud Raviart, "Finite Element Methods for Navier-Stokes Equations,", 5 of Springer Series in Computational Mathematics, 5 (1986).  doi: 10.1007/978-3-642-61623-5.  Google Scholar

[12]

Kai Hiltunen, "Mathematical and Numerical Modelling of Consolidation Processes in Paper Machines,", University of Jyväskylä Department of Mathematics, (1995).   Google Scholar

[13]

J. Hudson, O. Stephansson, J. Andersson, C.-F. Tsang and L. Ling, Coupled t-h-m issues related to radioactive waste repository design and performance,, International Journal of Rock Mechanics and Mining Sciences, 38 (2001), 143.   Google Scholar

[14]

Jozef Kačur, "Method of Rothe in Evolution Equations,", 80 of Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 80 (1985).   Google Scholar

[15]

J.-M. Kim and R. Parizek, Numerical simulation of the noordbergum effect resulting from groundwater pumping in a layered aquifer system,, Journal of Hydrology, 202 (1997), 231.   Google Scholar

[16]

Kenneth L. Kuttler, Jr., Time-dependent implicit evolution equations,, Nonlinear Anal., 10 (1986), 447.  doi: 10.1016/0362-546X(86)90050-7.  Google Scholar

[17]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires,", Dunod, (1969).   Google Scholar

[18]

N. Lubick, Modeling complex, multiphase porous media systems,, SIAM News, 35 (2002).   Google Scholar

[19]

A. Naumovich and F. J. Gaspar, On a multigrid solver for the three-dimensional Biot poroe- lasticity system in multilayered domains,, Comput. Vis. Sci., 11 (2008), 77.  doi: 10.1007/s00791-007-0059-8.  Google Scholar

[20]

Phillip Joseph Phillips, "Finite Element Methods in Linear Poroelasticity: Theoretical and Computational Results,", ProQuest LLC, (2005).   Google Scholar

[21]

Phillip Joseph Phillips and Mary F. Wheeler, A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity,, Comput. Geosci., 12 (2008), 417.  doi: 10.1007/s10596-008-9082-1.  Google Scholar

[22]

Karel Rektorys, "The Method of Discretization in Time and Partial Differential Equations,", 4 of Mathematics and Its Applications (East European Series), 4 (1982).   Google Scholar

[23]

Michael Renardy and Robert C. Rogers, "An Introduction to Partial Differential Equations,", 13 of Texts in Applied Mathematics, 13 (2004).   Google Scholar

[24]

T. Roose, P. A. Netti, L. Munn, Y. Boucher and R. Jain, Solid stress generated by spheroid growth estimated using a linear poroelastic model,, Microvascular Research, 66 (2003), 204.   Google Scholar

[25]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,", 49 of Mathematical Surveys and Monographs. American Mathematical Society, 49 (1997).   Google Scholar

[26]

R. E. Showalter, Diffusion in poro-elastic media,, J. Math. Anal. Appl., 251 (2000), 310.  doi: 10.1006/jmaa.2000.7048.  Google Scholar

[27]

A. Smillie, I. Sobey and Z. Molnar, A hydro-elastic model of hydrocephalus,, Technical report, (2004).   Google Scholar

[28]

Vidar Thomée, "Galerkin Finite Element Methods for Parabolic Problems,", 25 of Springer Series in Computational Mathematics. Springer-Verlag, 25 (2006).   Google Scholar

[29]

Herbert F. Wang, "Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrology,", Princeton Series in Geophysics. Princeton University Press, (2000).   Google Scholar

[30]

A. Ženíšek, "Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations,", Computational Mathematics and Applications. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], (1990).   Google Scholar

[31]

Alexander Ženíšek, Finite element methods for coupled thermoelasticity and coupled consolidation of clay,, RAIRO Anal. Numér., 18 (1984), 183.   Google Scholar

show all references

References:
[1]

Jean-Louis Auriault, Claude Boutin and Christian Geindreau, "Homogenization of Coupled Phenomena in Hetrogenous Media,", ISTE Ltd., (2009).   Google Scholar

[2]

H. Bryne and L. Preziosi, Modeling solid tumour growth using the theory of mixtures,, Mathematical Medicine and Biology, 20 (2003), 341.   Google Scholar

[3]

P. C. Carman, Permeability of saturated sands, soils and clays,, Journal of Agricultural Science, 29 (1939), 263.   Google Scholar

[4]

Robert Wayne Carroll and Ralph E. Showalter, "Singular and Degenerate Cauchy Problems,", Academic Press [Harcourt Brace Jovanovich Publishers], 127 (1976).   Google Scholar

[5]

Olivier Coussy, "Poromechanics,", John Wiley & Sons Ltd., (2004).   Google Scholar

[6]

Olivier Coussy, "Mechanics and Physics of Porous Solids,", John Wiley & Sons Ltd., (2010).   Google Scholar

[7]

Alexandre Ern and Sébastien Meunier, A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems,, M2AN Math. Model. Numer. Anal., 43 (2009), 353.  doi: 10.1051/m2an:2008048.  Google Scholar

[8]

Lawrence C. Evans, "Partial Differential Equations,", 19 of Graduate Studies in Mathematics. American Mathematical Society, 19 (2010).   Google Scholar

[9]

F. J. Gaspar, F. J. Lisbona and P. N. Vabishchevich, Finite difference schemes for poro-elastic problems,, Comput. Methods Appl. Math., 2 (2002), 132.   Google Scholar

[10]

F. J. Gaspar, F. J. Lisbona and P. N. Vabishchevich, A finite difference analysis of Biot's consolidation model,, Appl. Numer. Math., 44 (2003), 487.  doi: 10.1016/S0168-9274(02)00190-3.  Google Scholar

[11]

Vivette Girault and Pierre-Arnaud Raviart, "Finite Element Methods for Navier-Stokes Equations,", 5 of Springer Series in Computational Mathematics, 5 (1986).  doi: 10.1007/978-3-642-61623-5.  Google Scholar

[12]

Kai Hiltunen, "Mathematical and Numerical Modelling of Consolidation Processes in Paper Machines,", University of Jyväskylä Department of Mathematics, (1995).   Google Scholar

[13]

J. Hudson, O. Stephansson, J. Andersson, C.-F. Tsang and L. Ling, Coupled t-h-m issues related to radioactive waste repository design and performance,, International Journal of Rock Mechanics and Mining Sciences, 38 (2001), 143.   Google Scholar

[14]

Jozef Kačur, "Method of Rothe in Evolution Equations,", 80 of Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 80 (1985).   Google Scholar

[15]

J.-M. Kim and R. Parizek, Numerical simulation of the noordbergum effect resulting from groundwater pumping in a layered aquifer system,, Journal of Hydrology, 202 (1997), 231.   Google Scholar

[16]

Kenneth L. Kuttler, Jr., Time-dependent implicit evolution equations,, Nonlinear Anal., 10 (1986), 447.  doi: 10.1016/0362-546X(86)90050-7.  Google Scholar

[17]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires,", Dunod, (1969).   Google Scholar

[18]

N. Lubick, Modeling complex, multiphase porous media systems,, SIAM News, 35 (2002).   Google Scholar

[19]

A. Naumovich and F. J. Gaspar, On a multigrid solver for the three-dimensional Biot poroe- lasticity system in multilayered domains,, Comput. Vis. Sci., 11 (2008), 77.  doi: 10.1007/s00791-007-0059-8.  Google Scholar

[20]

Phillip Joseph Phillips, "Finite Element Methods in Linear Poroelasticity: Theoretical and Computational Results,", ProQuest LLC, (2005).   Google Scholar

[21]

Phillip Joseph Phillips and Mary F. Wheeler, A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity,, Comput. Geosci., 12 (2008), 417.  doi: 10.1007/s10596-008-9082-1.  Google Scholar

[22]

Karel Rektorys, "The Method of Discretization in Time and Partial Differential Equations,", 4 of Mathematics and Its Applications (East European Series), 4 (1982).   Google Scholar

[23]

Michael Renardy and Robert C. Rogers, "An Introduction to Partial Differential Equations,", 13 of Texts in Applied Mathematics, 13 (2004).   Google Scholar

[24]

T. Roose, P. A. Netti, L. Munn, Y. Boucher and R. Jain, Solid stress generated by spheroid growth estimated using a linear poroelastic model,, Microvascular Research, 66 (2003), 204.   Google Scholar

[25]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,", 49 of Mathematical Surveys and Monographs. American Mathematical Society, 49 (1997).   Google Scholar

[26]

R. E. Showalter, Diffusion in poro-elastic media,, J. Math. Anal. Appl., 251 (2000), 310.  doi: 10.1006/jmaa.2000.7048.  Google Scholar

[27]

A. Smillie, I. Sobey and Z. Molnar, A hydro-elastic model of hydrocephalus,, Technical report, (2004).   Google Scholar

[28]

Vidar Thomée, "Galerkin Finite Element Methods for Parabolic Problems,", 25 of Springer Series in Computational Mathematics. Springer-Verlag, 25 (2006).   Google Scholar

[29]

Herbert F. Wang, "Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrology,", Princeton Series in Geophysics. Princeton University Press, (2000).   Google Scholar

[30]

A. Ženíšek, "Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations,", Computational Mathematics and Applications. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], (1990).   Google Scholar

[31]

Alexander Ženíšek, Finite element methods for coupled thermoelasticity and coupled consolidation of clay,, RAIRO Anal. Numér., 18 (1984), 183.   Google Scholar

[1]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[2]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[3]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[4]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[5]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[6]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[7]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[8]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[9]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[10]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[11]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[12]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[13]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[14]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[15]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[16]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[17]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[18]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[19]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[20]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (84)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]