• Previous Article
    The existence of weak solutions to immiscible compressible two-phase flow in porous media: The case of fields with different rock-types
  • DCDS-B Home
  • This Issue
  • Next Article
    Finite-time quenching of competing species with constrained boundary evaporation
July  2013, 18(5): 1253-1273. doi: 10.3934/dcdsb.2013.18.1253

Analysis and numerical approximations of equations of nonlinear poroelasticity

1. 

Department of Mathematics & Statistics, Auburn University, Auburn, AL 36849, United States, United States

Received  August 2012 Revised  January 2013 Published  March 2013

The equations of quasi-static poroelasticity which model flow through elastic porous media are considered. It is assumed that the hydraulic conductivity depends nonlinearly on the displacement (the dilatation) of the medium. The existence of a weak solution is proved using the modified Rothe's method. Numerical approximations of solutions by the finite element method are considered. Error estimates are obtained and numerical experiments are conducted to illustrate the theoretical results, and the efficiency and accuracy of the numerical method.
Citation: Yanzhao Cao, Song Chen, A. J. Meir. Analysis and numerical approximations of equations of nonlinear poroelasticity. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1253-1273. doi: 10.3934/dcdsb.2013.18.1253
References:
[1]

Jean-Louis Auriault, Claude Boutin and Christian Geindreau, "Homogenization of Coupled Phenomena in Hetrogenous Media,", ISTE Ltd., (2009). Google Scholar

[2]

H. Bryne and L. Preziosi, Modeling solid tumour growth using the theory of mixtures,, Mathematical Medicine and Biology, 20 (2003), 341. Google Scholar

[3]

P. C. Carman, Permeability of saturated sands, soils and clays,, Journal of Agricultural Science, 29 (1939), 263. Google Scholar

[4]

Robert Wayne Carroll and Ralph E. Showalter, "Singular and Degenerate Cauchy Problems,", Academic Press [Harcourt Brace Jovanovich Publishers], 127 (1976). Google Scholar

[5]

Olivier Coussy, "Poromechanics,", John Wiley & Sons Ltd., (2004). Google Scholar

[6]

Olivier Coussy, "Mechanics and Physics of Porous Solids,", John Wiley & Sons Ltd., (2010). Google Scholar

[7]

Alexandre Ern and Sébastien Meunier, A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems,, M2AN Math. Model. Numer. Anal., 43 (2009), 353. doi: 10.1051/m2an:2008048. Google Scholar

[8]

Lawrence C. Evans, "Partial Differential Equations,", 19 of Graduate Studies in Mathematics. American Mathematical Society, 19 (2010). Google Scholar

[9]

F. J. Gaspar, F. J. Lisbona and P. N. Vabishchevich, Finite difference schemes for poro-elastic problems,, Comput. Methods Appl. Math., 2 (2002), 132. Google Scholar

[10]

F. J. Gaspar, F. J. Lisbona and P. N. Vabishchevich, A finite difference analysis of Biot's consolidation model,, Appl. Numer. Math., 44 (2003), 487. doi: 10.1016/S0168-9274(02)00190-3. Google Scholar

[11]

Vivette Girault and Pierre-Arnaud Raviart, "Finite Element Methods for Navier-Stokes Equations,", 5 of Springer Series in Computational Mathematics, 5 (1986). doi: 10.1007/978-3-642-61623-5. Google Scholar

[12]

Kai Hiltunen, "Mathematical and Numerical Modelling of Consolidation Processes in Paper Machines,", University of Jyväskylä Department of Mathematics, (1995). Google Scholar

[13]

J. Hudson, O. Stephansson, J. Andersson, C.-F. Tsang and L. Ling, Coupled t-h-m issues related to radioactive waste repository design and performance,, International Journal of Rock Mechanics and Mining Sciences, 38 (2001), 143. Google Scholar

[14]

Jozef Kačur, "Method of Rothe in Evolution Equations,", 80 of Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 80 (1985). Google Scholar

[15]

J.-M. Kim and R. Parizek, Numerical simulation of the noordbergum effect resulting from groundwater pumping in a layered aquifer system,, Journal of Hydrology, 202 (1997), 231. Google Scholar

[16]

Kenneth L. Kuttler, Jr., Time-dependent implicit evolution equations,, Nonlinear Anal., 10 (1986), 447. doi: 10.1016/0362-546X(86)90050-7. Google Scholar

[17]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires,", Dunod, (1969). Google Scholar

[18]

N. Lubick, Modeling complex, multiphase porous media systems,, SIAM News, 35 (2002). Google Scholar

[19]

A. Naumovich and F. J. Gaspar, On a multigrid solver for the three-dimensional Biot poroe- lasticity system in multilayered domains,, Comput. Vis. Sci., 11 (2008), 77. doi: 10.1007/s00791-007-0059-8. Google Scholar

[20]

Phillip Joseph Phillips, "Finite Element Methods in Linear Poroelasticity: Theoretical and Computational Results,", ProQuest LLC, (2005). Google Scholar

[21]

Phillip Joseph Phillips and Mary F. Wheeler, A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity,, Comput. Geosci., 12 (2008), 417. doi: 10.1007/s10596-008-9082-1. Google Scholar

[22]

Karel Rektorys, "The Method of Discretization in Time and Partial Differential Equations,", 4 of Mathematics and Its Applications (East European Series), 4 (1982). Google Scholar

[23]

Michael Renardy and Robert C. Rogers, "An Introduction to Partial Differential Equations,", 13 of Texts in Applied Mathematics, 13 (2004). Google Scholar

[24]

T. Roose, P. A. Netti, L. Munn, Y. Boucher and R. Jain, Solid stress generated by spheroid growth estimated using a linear poroelastic model,, Microvascular Research, 66 (2003), 204. Google Scholar

[25]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,", 49 of Mathematical Surveys and Monographs. American Mathematical Society, 49 (1997). Google Scholar

[26]

R. E. Showalter, Diffusion in poro-elastic media,, J. Math. Anal. Appl., 251 (2000), 310. doi: 10.1006/jmaa.2000.7048. Google Scholar

[27]

A. Smillie, I. Sobey and Z. Molnar, A hydro-elastic model of hydrocephalus,, Technical report, (2004). Google Scholar

[28]

Vidar Thomée, "Galerkin Finite Element Methods for Parabolic Problems,", 25 of Springer Series in Computational Mathematics. Springer-Verlag, 25 (2006). Google Scholar

[29]

Herbert F. Wang, "Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrology,", Princeton Series in Geophysics. Princeton University Press, (2000). Google Scholar

[30]

A. Ženíšek, "Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations,", Computational Mathematics and Applications. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], (1990). Google Scholar

[31]

Alexander Ženíšek, Finite element methods for coupled thermoelasticity and coupled consolidation of clay,, RAIRO Anal. Numér., 18 (1984), 183. Google Scholar

show all references

References:
[1]

Jean-Louis Auriault, Claude Boutin and Christian Geindreau, "Homogenization of Coupled Phenomena in Hetrogenous Media,", ISTE Ltd., (2009). Google Scholar

[2]

H. Bryne and L. Preziosi, Modeling solid tumour growth using the theory of mixtures,, Mathematical Medicine and Biology, 20 (2003), 341. Google Scholar

[3]

P. C. Carman, Permeability of saturated sands, soils and clays,, Journal of Agricultural Science, 29 (1939), 263. Google Scholar

[4]

Robert Wayne Carroll and Ralph E. Showalter, "Singular and Degenerate Cauchy Problems,", Academic Press [Harcourt Brace Jovanovich Publishers], 127 (1976). Google Scholar

[5]

Olivier Coussy, "Poromechanics,", John Wiley & Sons Ltd., (2004). Google Scholar

[6]

Olivier Coussy, "Mechanics and Physics of Porous Solids,", John Wiley & Sons Ltd., (2010). Google Scholar

[7]

Alexandre Ern and Sébastien Meunier, A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems,, M2AN Math. Model. Numer. Anal., 43 (2009), 353. doi: 10.1051/m2an:2008048. Google Scholar

[8]

Lawrence C. Evans, "Partial Differential Equations,", 19 of Graduate Studies in Mathematics. American Mathematical Society, 19 (2010). Google Scholar

[9]

F. J. Gaspar, F. J. Lisbona and P. N. Vabishchevich, Finite difference schemes for poro-elastic problems,, Comput. Methods Appl. Math., 2 (2002), 132. Google Scholar

[10]

F. J. Gaspar, F. J. Lisbona and P. N. Vabishchevich, A finite difference analysis of Biot's consolidation model,, Appl. Numer. Math., 44 (2003), 487. doi: 10.1016/S0168-9274(02)00190-3. Google Scholar

[11]

Vivette Girault and Pierre-Arnaud Raviart, "Finite Element Methods for Navier-Stokes Equations,", 5 of Springer Series in Computational Mathematics, 5 (1986). doi: 10.1007/978-3-642-61623-5. Google Scholar

[12]

Kai Hiltunen, "Mathematical and Numerical Modelling of Consolidation Processes in Paper Machines,", University of Jyväskylä Department of Mathematics, (1995). Google Scholar

[13]

J. Hudson, O. Stephansson, J. Andersson, C.-F. Tsang and L. Ling, Coupled t-h-m issues related to radioactive waste repository design and performance,, International Journal of Rock Mechanics and Mining Sciences, 38 (2001), 143. Google Scholar

[14]

Jozef Kačur, "Method of Rothe in Evolution Equations,", 80 of Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 80 (1985). Google Scholar

[15]

J.-M. Kim and R. Parizek, Numerical simulation of the noordbergum effect resulting from groundwater pumping in a layered aquifer system,, Journal of Hydrology, 202 (1997), 231. Google Scholar

[16]

Kenneth L. Kuttler, Jr., Time-dependent implicit evolution equations,, Nonlinear Anal., 10 (1986), 447. doi: 10.1016/0362-546X(86)90050-7. Google Scholar

[17]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires,", Dunod, (1969). Google Scholar

[18]

N. Lubick, Modeling complex, multiphase porous media systems,, SIAM News, 35 (2002). Google Scholar

[19]

A. Naumovich and F. J. Gaspar, On a multigrid solver for the three-dimensional Biot poroe- lasticity system in multilayered domains,, Comput. Vis. Sci., 11 (2008), 77. doi: 10.1007/s00791-007-0059-8. Google Scholar

[20]

Phillip Joseph Phillips, "Finite Element Methods in Linear Poroelasticity: Theoretical and Computational Results,", ProQuest LLC, (2005). Google Scholar

[21]

Phillip Joseph Phillips and Mary F. Wheeler, A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity,, Comput. Geosci., 12 (2008), 417. doi: 10.1007/s10596-008-9082-1. Google Scholar

[22]

Karel Rektorys, "The Method of Discretization in Time and Partial Differential Equations,", 4 of Mathematics and Its Applications (East European Series), 4 (1982). Google Scholar

[23]

Michael Renardy and Robert C. Rogers, "An Introduction to Partial Differential Equations,", 13 of Texts in Applied Mathematics, 13 (2004). Google Scholar

[24]

T. Roose, P. A. Netti, L. Munn, Y. Boucher and R. Jain, Solid stress generated by spheroid growth estimated using a linear poroelastic model,, Microvascular Research, 66 (2003), 204. Google Scholar

[25]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,", 49 of Mathematical Surveys and Monographs. American Mathematical Society, 49 (1997). Google Scholar

[26]

R. E. Showalter, Diffusion in poro-elastic media,, J. Math. Anal. Appl., 251 (2000), 310. doi: 10.1006/jmaa.2000.7048. Google Scholar

[27]

A. Smillie, I. Sobey and Z. Molnar, A hydro-elastic model of hydrocephalus,, Technical report, (2004). Google Scholar

[28]

Vidar Thomée, "Galerkin Finite Element Methods for Parabolic Problems,", 25 of Springer Series in Computational Mathematics. Springer-Verlag, 25 (2006). Google Scholar

[29]

Herbert F. Wang, "Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrology,", Princeton Series in Geophysics. Princeton University Press, (2000). Google Scholar

[30]

A. Ženíšek, "Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations,", Computational Mathematics and Applications. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], (1990). Google Scholar

[31]

Alexander Ženíšek, Finite element methods for coupled thermoelasticity and coupled consolidation of clay,, RAIRO Anal. Numér., 18 (1984), 183. Google Scholar

[1]

Dorothee Knees, Andreas Schröder. Computational aspects of quasi-static crack propagation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 63-99. doi: 10.3934/dcdss.2013.6.63

[2]

Przemysław Górka. Quasi-static evolution of polyhedral crystals. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 309-320. doi: 10.3934/dcdsb.2008.9.309

[3]

Irina F. Sivergina, Michael P. Polis. About global null controllability of a quasi-static thermoelastic contact system. Conference Publications, 2005, 2005 (Special) : 816-823. doi: 10.3934/proc.2005.2005.816

[4]

Christopher J. Larsen. Local minimality and crack prediction in quasi-static Griffith fracture evolution. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 121-129. doi: 10.3934/dcdss.2013.6.121

[5]

Donald L. Brown, Vasilena Taralova. A multiscale finite element method for Neumann problems in porous microstructures. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1299-1326. doi: 10.3934/dcdss.2016052

[6]

Roman VodiČka, Vladislav MantiČ. An energy based formulation of a quasi-static interface damage model with a multilinear cohesive law. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1539-1561. doi: 10.3934/dcdss.2017079

[7]

Alice Fiaschi. Young-measure quasi-static damage evolution: The nonconvex and the brittle cases. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 17-42. doi: 10.3934/dcdss.2013.6.17

[8]

S. Bonafede, G. R. Cirmi, A.F. Tedeev. Finite speed of propagation for the porous media equation with lower order terms. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 305-314. doi: 10.3934/dcds.2000.6.305

[9]

Mattia Turra. Existence and extinction in finite time for Stratonovich gradient noise porous media equations. Evolution Equations & Control Theory, 2019, 8 (4) : 867-882. doi: 10.3934/eect.2019042

[10]

Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

[11]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[12]

Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153

[13]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

[14]

Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387

[15]

So-Hsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2343-2357. doi: 10.3934/dcdsb.2012.17.2343

[16]

Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure & Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297

[17]

Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496

[18]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[19]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[20]

Mario Ohlberger, Ben Schweizer. Modelling of interfaces in unsaturated porous media. Conference Publications, 2007, 2007 (Special) : 794-803. doi: 10.3934/proc.2007.2007.794

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]