July  2013, 18(5): 1275-1290. doi: 10.3934/dcdsb.2013.18.1275

Finite-time quenching of competing species with constrained boundary evaporation

1. 

CGG, Houston, TX 77072, United States

2. 

Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada

3. 

Department of Mathematics, Tulane University, New Orleans, LA 70118, United States

Received  July 2012 Revised  February 2013 Published  March 2013

We consider a class of SKT type reaction-cross diffusion models with vanishing random diffusion coefficients. For homogeneous Dirichlet boundary conditions we prove non-existence of global-in-time non-trivial non-negative smooth solutions. Some numerical results are also presented, suggesting the possibility of finite-time extinction.
Citation: Shu Dai, Dong Li, Kun Zhao. Finite-time quenching of competing species with constrained boundary evaporation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1275-1290. doi: 10.3934/dcdsb.2013.18.1275
References:
[1]

D. Blatt and H. Comins, Prey-predator models in spatially heterogeneous environments,, J. Theoretical Biology, 48 (1974), 75.  doi: 10.1016/0022-5193(74)90180-5.  Google Scholar

[2]

L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion,, SIAM J. Math. Anal., 36 (2004), 301.  doi: 10.1137/S0036141003427798.  Google Scholar

[3]

L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion,, J. Differential Equations, 224 (2006), 39.  doi: 10.1016/j.jde.2005.08.002.  Google Scholar

[4]

Y. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion,, Discrete Contin. Dyn. Syst., 9 (2003), 1193.  doi: 10.3934/dcds.2003.9.1193.  Google Scholar

[5]

Y. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion,, Discrete Contin. Dyn. Syst., 10 (2004), 719.  doi: 10.3934/dcds.2004.10.719.  Google Scholar

[6]

P. Deuring, An initial-boundary value problem for a certain density-dependent diffusion system,, Math. Z., 194 (1987), 375.  doi: 10.1007/BF01162244.  Google Scholar

[7]

P. Fife, Asymptotic states for equations of reaction and diffusion,, Bull. Amer. Math. Soc., 84 (1978), 693.   Google Scholar

[8]

G. Galiano, M. Garzón and A. Jüngel, Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model,, Numer. Math., 93 (2003), 655.  doi: 10.1007/s002110200406.  Google Scholar

[9]

W. Gurney and R. Nisbet, The regulation of inhomogeneous populations,, J. Theoretical Biology, 52 (1975), 441.  doi: 10.1016/0022-5193(75)90011-9.  Google Scholar

[10]

W. Gurney and R. Nisbet, A note on non-linear population transport,, J. Theoretical Biology, 56 (1976), 249.  doi: 10.1016/S0022-5193(76)80056-2.  Google Scholar

[11]

G. Hardin, The competitive exclusion principle,, Science, 131 (1960), 1292.  doi: 10.1126/science.131.3409.1292.  Google Scholar

[12]

J. Jackson and L. Segel, Dissipative structure: An explanation and an ecological example,, J. Theoretical Biology, 37 (1972), 545.  doi: 10.1016/0022-5193(72)90090-2.  Google Scholar

[13]

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theoretical Biology, 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[14]

J. Kim, Smooth solutions to a quasilinear system of diffusion equations for a certain population model,, Nonlinear Analysis, 8 (1984), 1121.  doi: 10.1016/0362-546X(84)90115-9.  Google Scholar

[15]

D. Le, Global existence for a class of strongly coupled parabolic systems,, Ann. Mat. Pura Appl., 185 (2006), 133.  doi: 10.1007/s10231-004-0131-7.  Google Scholar

[16]

D. Le and T. Nguyen, Global existence for a class of triangular parabolic systems on domains of arbitrary dimension,, Proc. Amer. Math. Soc., 133 (2005), 1985.  doi: 10.1090/S0002-9939-05-07867-6.  Google Scholar

[17]

D. Le, L. Nguyen and T. Nguyen, Shigesada-Kawasaki-Teramoto model on higher dimensional domains,, Electron. J. Differential Equations, (2003).   Google Scholar

[18]

S. Levin, Dispersion and Population Interactions,, American Naturalist, 108 (1974), 207.   Google Scholar

[19]

S. Levin, Some mathematical questions in biology - VII,, Lectures on Mathematics in the Life Sciences, 8 (1976).   Google Scholar

[20]

S. Levin, Studies in mathematical biology. Part II. Populations and communities,, MAA Studies in Mathematics, 16 (1978).   Google Scholar

[21]

Y. Li and C. Zhao, Global existence of solutions to a cross-diffusion system in higher dimensional domains,, Discrete Contin. Dyn. Syst., 12 (2005), 185.   Google Scholar

[22]

Y. Lou, S. Martinez and W. Ni, On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion,, Discrete Contin. Dyn. Syst., 6 (2000), 175.   Google Scholar

[23]

Y. Lou and W. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Differential Equations, 131 (1996), 79.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[24]

Y. Lou, W. Ni and Y. Wu, On the global existence of a cross-diffusion system,, Discrete Contin. Dyn. Syst., 4 (1998), 193.  doi: 10.3934/dcds.1998.4.193.  Google Scholar

[25]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49.  doi: 10.1007/BF00276035.  Google Scholar

[26]

M. Morisita, Habitat preference and evaluation of environment of an animal. Experimental studies on the population density of an ant-lion, Glenuroides japonicus M'L. (I),, Physiol. Ecol. Japan, 5 (1952), 1.   Google Scholar

[27]

A. Okubo, "Ecology and Diffusion,", Tokyo: Tsukiji Shokan, (1975).   Google Scholar

[28]

M. Pozio and A. Tesei, Global existence of solutions for a strongly coupled quasilinear parabolic system,, Nonlinear Anal., 14 (1990), 657.  doi: 10.1016/0362-546X(90)90043-G.  Google Scholar

[29]

R. Redlinger, Existence of the global attractor for a strongly coupled parabolic system arising in population dynamics,, J. Differential Equations, 118 (1995), 219.  doi: 10.1006/jdeq.1995.1073.  Google Scholar

[30]

G. Rosen, Effects of diffusion on the stability of the equilibrium in multi-species ecological systems,, Bull. Math. Biol., 39 (1977), 373.   Google Scholar

[31]

W. Ruan, Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients,, J. Math. Anal. Appl., 197 (1996), 558.  doi: 10.1006/jmaa.1996.0039.  Google Scholar

[32]

K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions,, Discrete Contin. Dyn. Syst., 9 (2003), 1049.  doi: 10.3934/dcds.2003.9.1049.  Google Scholar

[33]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theo. Biol., 79 (1979), 83.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[34]

S. Shim, Uniform boundedness and convergence of solutions to cross-diffusion systems,, J. Differential Equations, 185 (2002), 281.  doi: 10.1006/jdeq.2002.4169.  Google Scholar

[35]

P. Tuoc, Global existence of solutions to Shigesada-Kawasaki-Teramoto cross-diffusion systems on domains of arbitrary dimensions,, Proc. Amer. Math. Soc., 135 (2007), 3933.  doi: 10.1090/S0002-9939-07-08978-2.  Google Scholar

[36]

P. Tuoc, On global existence of solutions to a cross-diffusion system,, J. Math. Anal. Appl., 343 (2008), 826.  doi: 10.1016/j.jmaa.2008.01.089.  Google Scholar

[37]

A. Turing, The Chemical Basis of Morphogenesis,, Phil. Transact. Royal Soc. B, 237 (1952), 37.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[38]

Y. Wu, Qualitative studies of solutions for some cross-diffusion systems,, China-Japan Symposium on Reaction-Diffusion Equations and their Applications and Computational Aspects (Shanghai, (1997), 177.   Google Scholar

[39]

A. Yagi, Global solution to some quasilinear parabolic system in population dynamics,, Nonlinear Analysis, 21 (1993), 603.  doi: 10.1016/0362-546X(93)90004-C.  Google Scholar

show all references

References:
[1]

D. Blatt and H. Comins, Prey-predator models in spatially heterogeneous environments,, J. Theoretical Biology, 48 (1974), 75.  doi: 10.1016/0022-5193(74)90180-5.  Google Scholar

[2]

L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion,, SIAM J. Math. Anal., 36 (2004), 301.  doi: 10.1137/S0036141003427798.  Google Scholar

[3]

L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion,, J. Differential Equations, 224 (2006), 39.  doi: 10.1016/j.jde.2005.08.002.  Google Scholar

[4]

Y. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion,, Discrete Contin. Dyn. Syst., 9 (2003), 1193.  doi: 10.3934/dcds.2003.9.1193.  Google Scholar

[5]

Y. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion,, Discrete Contin. Dyn. Syst., 10 (2004), 719.  doi: 10.3934/dcds.2004.10.719.  Google Scholar

[6]

P. Deuring, An initial-boundary value problem for a certain density-dependent diffusion system,, Math. Z., 194 (1987), 375.  doi: 10.1007/BF01162244.  Google Scholar

[7]

P. Fife, Asymptotic states for equations of reaction and diffusion,, Bull. Amer. Math. Soc., 84 (1978), 693.   Google Scholar

[8]

G. Galiano, M. Garzón and A. Jüngel, Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model,, Numer. Math., 93 (2003), 655.  doi: 10.1007/s002110200406.  Google Scholar

[9]

W. Gurney and R. Nisbet, The regulation of inhomogeneous populations,, J. Theoretical Biology, 52 (1975), 441.  doi: 10.1016/0022-5193(75)90011-9.  Google Scholar

[10]

W. Gurney and R. Nisbet, A note on non-linear population transport,, J. Theoretical Biology, 56 (1976), 249.  doi: 10.1016/S0022-5193(76)80056-2.  Google Scholar

[11]

G. Hardin, The competitive exclusion principle,, Science, 131 (1960), 1292.  doi: 10.1126/science.131.3409.1292.  Google Scholar

[12]

J. Jackson and L. Segel, Dissipative structure: An explanation and an ecological example,, J. Theoretical Biology, 37 (1972), 545.  doi: 10.1016/0022-5193(72)90090-2.  Google Scholar

[13]

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theoretical Biology, 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[14]

J. Kim, Smooth solutions to a quasilinear system of diffusion equations for a certain population model,, Nonlinear Analysis, 8 (1984), 1121.  doi: 10.1016/0362-546X(84)90115-9.  Google Scholar

[15]

D. Le, Global existence for a class of strongly coupled parabolic systems,, Ann. Mat. Pura Appl., 185 (2006), 133.  doi: 10.1007/s10231-004-0131-7.  Google Scholar

[16]

D. Le and T. Nguyen, Global existence for a class of triangular parabolic systems on domains of arbitrary dimension,, Proc. Amer. Math. Soc., 133 (2005), 1985.  doi: 10.1090/S0002-9939-05-07867-6.  Google Scholar

[17]

D. Le, L. Nguyen and T. Nguyen, Shigesada-Kawasaki-Teramoto model on higher dimensional domains,, Electron. J. Differential Equations, (2003).   Google Scholar

[18]

S. Levin, Dispersion and Population Interactions,, American Naturalist, 108 (1974), 207.   Google Scholar

[19]

S. Levin, Some mathematical questions in biology - VII,, Lectures on Mathematics in the Life Sciences, 8 (1976).   Google Scholar

[20]

S. Levin, Studies in mathematical biology. Part II. Populations and communities,, MAA Studies in Mathematics, 16 (1978).   Google Scholar

[21]

Y. Li and C. Zhao, Global existence of solutions to a cross-diffusion system in higher dimensional domains,, Discrete Contin. Dyn. Syst., 12 (2005), 185.   Google Scholar

[22]

Y. Lou, S. Martinez and W. Ni, On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion,, Discrete Contin. Dyn. Syst., 6 (2000), 175.   Google Scholar

[23]

Y. Lou and W. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Differential Equations, 131 (1996), 79.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[24]

Y. Lou, W. Ni and Y. Wu, On the global existence of a cross-diffusion system,, Discrete Contin. Dyn. Syst., 4 (1998), 193.  doi: 10.3934/dcds.1998.4.193.  Google Scholar

[25]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49.  doi: 10.1007/BF00276035.  Google Scholar

[26]

M. Morisita, Habitat preference and evaluation of environment of an animal. Experimental studies on the population density of an ant-lion, Glenuroides japonicus M'L. (I),, Physiol. Ecol. Japan, 5 (1952), 1.   Google Scholar

[27]

A. Okubo, "Ecology and Diffusion,", Tokyo: Tsukiji Shokan, (1975).   Google Scholar

[28]

M. Pozio and A. Tesei, Global existence of solutions for a strongly coupled quasilinear parabolic system,, Nonlinear Anal., 14 (1990), 657.  doi: 10.1016/0362-546X(90)90043-G.  Google Scholar

[29]

R. Redlinger, Existence of the global attractor for a strongly coupled parabolic system arising in population dynamics,, J. Differential Equations, 118 (1995), 219.  doi: 10.1006/jdeq.1995.1073.  Google Scholar

[30]

G. Rosen, Effects of diffusion on the stability of the equilibrium in multi-species ecological systems,, Bull. Math. Biol., 39 (1977), 373.   Google Scholar

[31]

W. Ruan, Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients,, J. Math. Anal. Appl., 197 (1996), 558.  doi: 10.1006/jmaa.1996.0039.  Google Scholar

[32]

K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions,, Discrete Contin. Dyn. Syst., 9 (2003), 1049.  doi: 10.3934/dcds.2003.9.1049.  Google Scholar

[33]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theo. Biol., 79 (1979), 83.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[34]

S. Shim, Uniform boundedness and convergence of solutions to cross-diffusion systems,, J. Differential Equations, 185 (2002), 281.  doi: 10.1006/jdeq.2002.4169.  Google Scholar

[35]

P. Tuoc, Global existence of solutions to Shigesada-Kawasaki-Teramoto cross-diffusion systems on domains of arbitrary dimensions,, Proc. Amer. Math. Soc., 135 (2007), 3933.  doi: 10.1090/S0002-9939-07-08978-2.  Google Scholar

[36]

P. Tuoc, On global existence of solutions to a cross-diffusion system,, J. Math. Anal. Appl., 343 (2008), 826.  doi: 10.1016/j.jmaa.2008.01.089.  Google Scholar

[37]

A. Turing, The Chemical Basis of Morphogenesis,, Phil. Transact. Royal Soc. B, 237 (1952), 37.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[38]

Y. Wu, Qualitative studies of solutions for some cross-diffusion systems,, China-Japan Symposium on Reaction-Diffusion Equations and their Applications and Computational Aspects (Shanghai, (1997), 177.   Google Scholar

[39]

A. Yagi, Global solution to some quasilinear parabolic system in population dynamics,, Nonlinear Analysis, 21 (1993), 603.  doi: 10.1016/0362-546X(93)90004-C.  Google Scholar

[1]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[2]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[3]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[4]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[5]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[6]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[7]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[8]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[9]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[10]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[11]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[12]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[13]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[14]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[15]

Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228

[16]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[17]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[18]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[19]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[20]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (89)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]