July  2013, 18(5): 1291-1304. doi: 10.3934/dcdsb.2013.18.1291

Traveling wave solutions for a diffusive sis epidemic model

1. 

Department of Mathematics, Shanghai Normal University, Shanghai, 200234, China

2. 

Department of Mathematical Science, University of Alabama in Huntsville, Huntsville, Alabama 35899, United States

Received  August 2012 Revised  February 2013 Published  March 2013

In this paper, we study the traveling wave solutions of an SIS reaction-diffusion epidemic model. The techniques of qualitative analysis has been developed which enable us to show the existence of traveling wave solutions connecting the disease-free equilibrium point and an endemic equilibrium point. In addition, we also find the precise value of the minimum speed that is significant to study the spreading speed of the population towards to the endemic steady state.
Citation: Wei Ding, Wenzhang Huang, Siroj Kansakar. Traveling wave solutions for a diffusive sis epidemic model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1291-1304. doi: 10.3934/dcdsb.2013.18.1291
References:
[1]

L. J. S. Allen, B. M. Boller, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model,, Discrete Contin. Dyn. Syst. A, 21 (2008), 1.  doi: 10.3934/dcds.2008.21.1.  Google Scholar

[2]

I. Beardmore and R. Beardmore, The global structure of a spatial model of infections disease,, Proc. Roy. Soc. Lond. A., 459 (2003), 1427.  doi: 10.1098/rspa.2002.1080.  Google Scholar

[3]

O. Diekmann, Thresholds and traveling waves for the geographical spread of infection,, J. Math. Biol., 6 (1978), 109.  doi: 10.1007/BF02450783.  Google Scholar

[4]

O. Diekmann, Run for your life, A note on the aymptotic speed of propagation of an epidimic,, J. Diff. Equations, 33 (1979), 58.  doi: 10.1016/0022-0396(79)90080-9.  Google Scholar

[5]

S. R. Dunbar, Traveling wave solutions of Diffusive Lotka-Volterra Equations: A heteroclinic connection in $\mathbbR^4$,, Trans. Amer. Math. Society, 286 (1984), 557.  doi: 10.2307/1999810.  Google Scholar

[6]

P. C. Fife, "Mathematical Aspects of Reacting and Diffusing systems,", Lecture Notes in Biomath, 28 (1979).   Google Scholar

[7]

W. Fitzgibbon, M. Langlais and J. J. Morgan, A mathematical model of the spread of Feline Leukemia Virus through a highly heterogeneous spatial domain,, SIAM J. Math. Anal., 33 (2001), 570.  doi: 10.1137/S0036141000371757.  Google Scholar

[8]

W. Fitzgibbon, M. Langlais and J. J. Morgan, A reaction-diffusion system modelling direct and indirect transmission of diseases,, Discrete and Continuous Dynamical Systems, 4 (2004), 893.  doi: 10.3934/dcdsb.2004.4.893.  Google Scholar

[9]

W. Fitzgibbon and M. Langlais, Simple models for the transmission of microparasites between host populations living on non coincident domains,, Structured Population Models in Biology and Epidemiology Lecture Notes in Mathematics, 1936 (2008), 115.   Google Scholar

[10]

R. A. Gardner, Review on traveling wave solutions of parabolic systems by A. I. Volpert, V. A. Volpert,, Bull. Aner. Math. Soc., 32 (1995), 446.  doi: 10.1090/S0273-0979-1995-00607-5.  Google Scholar

[11]

W. Huang, Traveling wave solutions for a class of predator-prey systems,, Journal of Dynamics and Differential Equations, 24 (2012), 633.  doi: 10.1007/s10884-012-9255-4.  Google Scholar

[12]

W. Huang, M. Han and K. Liu, Dynamics of an SIS reaction-dissusion Epidemic Model for Disease transmission,, Mathematical Biosciences and Engineering, 7 (2010), 51.  doi: 10.3934/mbe.2010.7.51.  Google Scholar

[13]

J. Keener and J. Sneyd, "Mathematical Physiology,", Springer-Verlag, (1998).   Google Scholar

[14]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics-I,, Original Research Article Bulletin of Mathematical Biology, 53 (1991), 33.   Google Scholar

[15]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics-II. the problem of endemicity,, Original Research Article Bulletin of Mathematical Biology, 53 (1991), 57.   Google Scholar

[16]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics-III. Further studies of the problem of endemicity,, Original Research Article Bulletin of Mathematical Biology, 53 (1991), 89.   Google Scholar

[17]

M. A. Lewis, B. Li and H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models,, J. Math. Biol., 45 (2002), 219.  doi: 10.1007/s002850200144.  Google Scholar

[18]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci, 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[19]

X. Liang and X. Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure and Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[20]

R. Peng and S. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model,, Non. Analysis, 71 (2009), 239.  doi: 10.1016/j.na.2008.10.043.  Google Scholar

[21]

J. Yang, S. Liang and Y. Zhang, Travelling Waves of a Delayed SIR Epidemic Model with Nonlinear Incidence Rate and Spatial Diffusion,, PLoS ONE, 6 (2011).  doi: 10.1371/journal.pone.0021128.  Google Scholar

show all references

References:
[1]

L. J. S. Allen, B. M. Boller, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model,, Discrete Contin. Dyn. Syst. A, 21 (2008), 1.  doi: 10.3934/dcds.2008.21.1.  Google Scholar

[2]

I. Beardmore and R. Beardmore, The global structure of a spatial model of infections disease,, Proc. Roy. Soc. Lond. A., 459 (2003), 1427.  doi: 10.1098/rspa.2002.1080.  Google Scholar

[3]

O. Diekmann, Thresholds and traveling waves for the geographical spread of infection,, J. Math. Biol., 6 (1978), 109.  doi: 10.1007/BF02450783.  Google Scholar

[4]

O. Diekmann, Run for your life, A note on the aymptotic speed of propagation of an epidimic,, J. Diff. Equations, 33 (1979), 58.  doi: 10.1016/0022-0396(79)90080-9.  Google Scholar

[5]

S. R. Dunbar, Traveling wave solutions of Diffusive Lotka-Volterra Equations: A heteroclinic connection in $\mathbbR^4$,, Trans. Amer. Math. Society, 286 (1984), 557.  doi: 10.2307/1999810.  Google Scholar

[6]

P. C. Fife, "Mathematical Aspects of Reacting and Diffusing systems,", Lecture Notes in Biomath, 28 (1979).   Google Scholar

[7]

W. Fitzgibbon, M. Langlais and J. J. Morgan, A mathematical model of the spread of Feline Leukemia Virus through a highly heterogeneous spatial domain,, SIAM J. Math. Anal., 33 (2001), 570.  doi: 10.1137/S0036141000371757.  Google Scholar

[8]

W. Fitzgibbon, M. Langlais and J. J. Morgan, A reaction-diffusion system modelling direct and indirect transmission of diseases,, Discrete and Continuous Dynamical Systems, 4 (2004), 893.  doi: 10.3934/dcdsb.2004.4.893.  Google Scholar

[9]

W. Fitzgibbon and M. Langlais, Simple models for the transmission of microparasites between host populations living on non coincident domains,, Structured Population Models in Biology and Epidemiology Lecture Notes in Mathematics, 1936 (2008), 115.   Google Scholar

[10]

R. A. Gardner, Review on traveling wave solutions of parabolic systems by A. I. Volpert, V. A. Volpert,, Bull. Aner. Math. Soc., 32 (1995), 446.  doi: 10.1090/S0273-0979-1995-00607-5.  Google Scholar

[11]

W. Huang, Traveling wave solutions for a class of predator-prey systems,, Journal of Dynamics and Differential Equations, 24 (2012), 633.  doi: 10.1007/s10884-012-9255-4.  Google Scholar

[12]

W. Huang, M. Han and K. Liu, Dynamics of an SIS reaction-dissusion Epidemic Model for Disease transmission,, Mathematical Biosciences and Engineering, 7 (2010), 51.  doi: 10.3934/mbe.2010.7.51.  Google Scholar

[13]

J. Keener and J. Sneyd, "Mathematical Physiology,", Springer-Verlag, (1998).   Google Scholar

[14]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics-I,, Original Research Article Bulletin of Mathematical Biology, 53 (1991), 33.   Google Scholar

[15]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics-II. the problem of endemicity,, Original Research Article Bulletin of Mathematical Biology, 53 (1991), 57.   Google Scholar

[16]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics-III. Further studies of the problem of endemicity,, Original Research Article Bulletin of Mathematical Biology, 53 (1991), 89.   Google Scholar

[17]

M. A. Lewis, B. Li and H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models,, J. Math. Biol., 45 (2002), 219.  doi: 10.1007/s002850200144.  Google Scholar

[18]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci, 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[19]

X. Liang and X. Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Comm. Pure and Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[20]

R. Peng and S. Liu, Global stability of the steady states of an SIS epidemic reaction-diffusion model,, Non. Analysis, 71 (2009), 239.  doi: 10.1016/j.na.2008.10.043.  Google Scholar

[21]

J. Yang, S. Liang and Y. Zhang, Travelling Waves of a Delayed SIR Epidemic Model with Nonlinear Incidence Rate and Spatial Diffusion,, PLoS ONE, 6 (2011).  doi: 10.1371/journal.pone.0021128.  Google Scholar

[1]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[2]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[3]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[4]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[7]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[8]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[9]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[10]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[11]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[12]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[13]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[14]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[15]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[16]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[17]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[18]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[19]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[20]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (106)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]