July  2013, 18(5): 1305-1321. doi: 10.3934/dcdsb.2013.18.1305

Analytical and numerical results on the positivity of steady state solutions of a thin film equation

1. 

Department of Mathematics, University of Toronto, Toronto, Canada

2. 

School of Mathematics, University of Minnesota, Minneapolis, MN, 55455, United States

Received  October 2011 Revised  December 2012 Published  March 2013

We consider an equation for a thin film of fluid on a rotating cylinder and present several new analytical and numerical results on steady state solutions. First, we provide an elementary proof that both weak and classical steady states must be strictly positive so long as the speed of rotation is nonzero. Next, we formulate an iterative spectral algorithm for computing these steady states. Finally, we explore a non-existence inequality for steady state solutions from the recent work of Chugunova, Pugh & Taranets.
Citation: Daniel Ginsberg, Gideon Simpson. Analytical and numerical results on the positivity of steady state solutions of a thin film equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1305-1321. doi: 10.3934/dcdsb.2013.18.1305
References:
[1]

R. A. Adams and J. J. F. Fournier, "Sobolev Spaces,", Academic Press, (2003).   Google Scholar

[2]

J. Ashmore, A. E. Hosoi and H. A. Stone, The effect of surface tension on rimming flows in a partially filled rotating cylinder,, Journal of Fluid Mechanics, 479 (2003), 65.   Google Scholar

[3]

D. Badali, M. Chugunova, D. Pelinovsky and S. Pollack, Regularized shock solutions in coating flows with small surface tension,, Physics of Fluids, 23 (2011).   Google Scholar

[4]

B. Jürgen and G. Günther, The thin-film equation: Recent advances and some new perspectives,, Journal of Physics: Condensed Matter, 17 (2005).   Google Scholar

[5]

E. Benilov, M. Benilov and N. Kopteva, Steady rimming flows with surface tension,, Journal of Fluid Mechanics, 597 (2008), 91.  doi: 10.1017/S0022112007009585.  Google Scholar

[6]

E. Beretta, M. Bertsch and R. Dal Passo, Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation,, Arch. Rational Mech. Anal., 129 (1995), 175.  doi: 10.1007/BF00379920.  Google Scholar

[7]

F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations,, Journal of Diff. Equations, 83 (1990), 179.  doi: 10.1016/0022-0396(90)90074-Y.  Google Scholar

[8]

A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: The moving contact line with a "porous media'' cut-off of van der Waals interactions,, Nonlinearity, 7 (1994), 1535.   Google Scholar

[9]

A. Burchard, M. Chugunova and B. Stephens, Convergence to equilibrium for a thin-film equation on a cylindrical surface,, Comm. Partial Diff. Equations, 37 (2012), 585.  doi: 10.1080/03605302.2011.648704.  Google Scholar

[10]

M. Chugunova, M. C. Pugh and R. M. Taranets, Nonnegative solutions for a long-wave unstable thin film equation with convection,, SIAM J. on Math. Anal., 42 (2010), 1826.  doi: 10.1137/090777062.  Google Scholar

[11]

R. V. Craster and O. K. Matar, Dynamics and stability of thin liquid films,, Rev. Modern Physics, 81 (2009), 1131.   Google Scholar

[12]

E. Doedel, AUTO: A program for the automatic bifurcation analysis of autonomous systems,, Cong. Num., 30 (1981), 265.   Google Scholar

[13]

L. C. Evans, "Partial Differential Equations,", 2nd edition, (2010).   Google Scholar

[14]

A. Oron and S. G. Bankoff, Long-scale evolution of thin liquid films,, Rev. Modern Physics, 69 (1997), 931.   Google Scholar

[15]

K. Pougatch and I. Frigaard, Thin film flow on the inside surface of a horizontally rotating cylinder: Steady state solutions and their stability,, Physics of Fluids, 23 (2011).   Google Scholar

[16]

V. V. Pukhnachev, Motion of a liquid film on the surface of a rotating cylinder in a gravitational field,, J. of App. Mech. and Tech. Physics, 18 (1977), 244.   Google Scholar

[17]

V. V. Pukhnachev, Asymptotic solution of the rotating film problem,, Izv. Vyssh. Uchebn. Zaved. Severo-Kavkaz. Reg. Estestv. Nauk, (2004), 191.   Google Scholar

[18]

V. V. Pukhnachev, On the equation of a rotating film,, Siberian Math. J., 46 (2005), 913.  doi: 10.1007/s11202-005-0088-9.  Google Scholar

[19]

A. E. Shishkov and R. M. Taranets, On the equation of the flow of thin films with nonlinear convection in multidimensional domains,, Ukr. Math. Bull., 1 (2004), 402.   Google Scholar

[20]

R. M. Taranets and A. E. Shishkov, A singular Cauchy problem for the equation of the flow of thin viscous films with nonlinear convection,, Ukr. Math. J., 58 (2006), 250.  doi: 10.1007/s11253-006-0066-9.  Google Scholar

[21]

L. N. Trefethen, "Spectral Methods in MATLAB,", SIAM, (2000).  doi: 10.1137/1.9780898719598.  Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, "Sobolev Spaces,", Academic Press, (2003).   Google Scholar

[2]

J. Ashmore, A. E. Hosoi and H. A. Stone, The effect of surface tension on rimming flows in a partially filled rotating cylinder,, Journal of Fluid Mechanics, 479 (2003), 65.   Google Scholar

[3]

D. Badali, M. Chugunova, D. Pelinovsky and S. Pollack, Regularized shock solutions in coating flows with small surface tension,, Physics of Fluids, 23 (2011).   Google Scholar

[4]

B. Jürgen and G. Günther, The thin-film equation: Recent advances and some new perspectives,, Journal of Physics: Condensed Matter, 17 (2005).   Google Scholar

[5]

E. Benilov, M. Benilov and N. Kopteva, Steady rimming flows with surface tension,, Journal of Fluid Mechanics, 597 (2008), 91.  doi: 10.1017/S0022112007009585.  Google Scholar

[6]

E. Beretta, M. Bertsch and R. Dal Passo, Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation,, Arch. Rational Mech. Anal., 129 (1995), 175.  doi: 10.1007/BF00379920.  Google Scholar

[7]

F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations,, Journal of Diff. Equations, 83 (1990), 179.  doi: 10.1016/0022-0396(90)90074-Y.  Google Scholar

[8]

A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: The moving contact line with a "porous media'' cut-off of van der Waals interactions,, Nonlinearity, 7 (1994), 1535.   Google Scholar

[9]

A. Burchard, M. Chugunova and B. Stephens, Convergence to equilibrium for a thin-film equation on a cylindrical surface,, Comm. Partial Diff. Equations, 37 (2012), 585.  doi: 10.1080/03605302.2011.648704.  Google Scholar

[10]

M. Chugunova, M. C. Pugh and R. M. Taranets, Nonnegative solutions for a long-wave unstable thin film equation with convection,, SIAM J. on Math. Anal., 42 (2010), 1826.  doi: 10.1137/090777062.  Google Scholar

[11]

R. V. Craster and O. K. Matar, Dynamics and stability of thin liquid films,, Rev. Modern Physics, 81 (2009), 1131.   Google Scholar

[12]

E. Doedel, AUTO: A program for the automatic bifurcation analysis of autonomous systems,, Cong. Num., 30 (1981), 265.   Google Scholar

[13]

L. C. Evans, "Partial Differential Equations,", 2nd edition, (2010).   Google Scholar

[14]

A. Oron and S. G. Bankoff, Long-scale evolution of thin liquid films,, Rev. Modern Physics, 69 (1997), 931.   Google Scholar

[15]

K. Pougatch and I. Frigaard, Thin film flow on the inside surface of a horizontally rotating cylinder: Steady state solutions and their stability,, Physics of Fluids, 23 (2011).   Google Scholar

[16]

V. V. Pukhnachev, Motion of a liquid film on the surface of a rotating cylinder in a gravitational field,, J. of App. Mech. and Tech. Physics, 18 (1977), 244.   Google Scholar

[17]

V. V. Pukhnachev, Asymptotic solution of the rotating film problem,, Izv. Vyssh. Uchebn. Zaved. Severo-Kavkaz. Reg. Estestv. Nauk, (2004), 191.   Google Scholar

[18]

V. V. Pukhnachev, On the equation of a rotating film,, Siberian Math. J., 46 (2005), 913.  doi: 10.1007/s11202-005-0088-9.  Google Scholar

[19]

A. E. Shishkov and R. M. Taranets, On the equation of the flow of thin films with nonlinear convection in multidimensional domains,, Ukr. Math. Bull., 1 (2004), 402.   Google Scholar

[20]

R. M. Taranets and A. E. Shishkov, A singular Cauchy problem for the equation of the flow of thin viscous films with nonlinear convection,, Ukr. Math. J., 58 (2006), 250.  doi: 10.1007/s11253-006-0066-9.  Google Scholar

[21]

L. N. Trefethen, "Spectral Methods in MATLAB,", SIAM, (2000).  doi: 10.1137/1.9780898719598.  Google Scholar

[1]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[2]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[3]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[4]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[5]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[6]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[7]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[8]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[9]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[10]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[11]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[12]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[13]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[14]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[15]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[16]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[17]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[18]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[19]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[20]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]