July  2013, 18(5): 1305-1321. doi: 10.3934/dcdsb.2013.18.1305

Analytical and numerical results on the positivity of steady state solutions of a thin film equation

1. 

Department of Mathematics, University of Toronto, Toronto, Canada

2. 

School of Mathematics, University of Minnesota, Minneapolis, MN, 55455, United States

Received  October 2011 Revised  December 2012 Published  March 2013

We consider an equation for a thin film of fluid on a rotating cylinder and present several new analytical and numerical results on steady state solutions. First, we provide an elementary proof that both weak and classical steady states must be strictly positive so long as the speed of rotation is nonzero. Next, we formulate an iterative spectral algorithm for computing these steady states. Finally, we explore a non-existence inequality for steady state solutions from the recent work of Chugunova, Pugh & Taranets.
Citation: Daniel Ginsberg, Gideon Simpson. Analytical and numerical results on the positivity of steady state solutions of a thin film equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1305-1321. doi: 10.3934/dcdsb.2013.18.1305
References:
[1]

R. A. Adams and J. J. F. Fournier, "Sobolev Spaces,", Academic Press, (2003).

[2]

J. Ashmore, A. E. Hosoi and H. A. Stone, The effect of surface tension on rimming flows in a partially filled rotating cylinder,, Journal of Fluid Mechanics, 479 (2003), 65.

[3]

D. Badali, M. Chugunova, D. Pelinovsky and S. Pollack, Regularized shock solutions in coating flows with small surface tension,, Physics of Fluids, 23 (2011).

[4]

B. Jürgen and G. Günther, The thin-film equation: Recent advances and some new perspectives,, Journal of Physics: Condensed Matter, 17 (2005).

[5]

E. Benilov, M. Benilov and N. Kopteva, Steady rimming flows with surface tension,, Journal of Fluid Mechanics, 597 (2008), 91. doi: 10.1017/S0022112007009585.

[6]

E. Beretta, M. Bertsch and R. Dal Passo, Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation,, Arch. Rational Mech. Anal., 129 (1995), 175. doi: 10.1007/BF00379920.

[7]

F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations,, Journal of Diff. Equations, 83 (1990), 179. doi: 10.1016/0022-0396(90)90074-Y.

[8]

A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: The moving contact line with a "porous media'' cut-off of van der Waals interactions,, Nonlinearity, 7 (1994), 1535.

[9]

A. Burchard, M. Chugunova and B. Stephens, Convergence to equilibrium for a thin-film equation on a cylindrical surface,, Comm. Partial Diff. Equations, 37 (2012), 585. doi: 10.1080/03605302.2011.648704.

[10]

M. Chugunova, M. C. Pugh and R. M. Taranets, Nonnegative solutions for a long-wave unstable thin film equation with convection,, SIAM J. on Math. Anal., 42 (2010), 1826. doi: 10.1137/090777062.

[11]

R. V. Craster and O. K. Matar, Dynamics and stability of thin liquid films,, Rev. Modern Physics, 81 (2009), 1131.

[12]

E. Doedel, AUTO: A program for the automatic bifurcation analysis of autonomous systems,, Cong. Num., 30 (1981), 265.

[13]

L. C. Evans, "Partial Differential Equations,", 2nd edition, (2010).

[14]

A. Oron and S. G. Bankoff, Long-scale evolution of thin liquid films,, Rev. Modern Physics, 69 (1997), 931.

[15]

K. Pougatch and I. Frigaard, Thin film flow on the inside surface of a horizontally rotating cylinder: Steady state solutions and their stability,, Physics of Fluids, 23 (2011).

[16]

V. V. Pukhnachev, Motion of a liquid film on the surface of a rotating cylinder in a gravitational field,, J. of App. Mech. and Tech. Physics, 18 (1977), 244.

[17]

V. V. Pukhnachev, Asymptotic solution of the rotating film problem,, Izv. Vyssh. Uchebn. Zaved. Severo-Kavkaz. Reg. Estestv. Nauk, (2004), 191.

[18]

V. V. Pukhnachev, On the equation of a rotating film,, Siberian Math. J., 46 (2005), 913. doi: 10.1007/s11202-005-0088-9.

[19]

A. E. Shishkov and R. M. Taranets, On the equation of the flow of thin films with nonlinear convection in multidimensional domains,, Ukr. Math. Bull., 1 (2004), 402.

[20]

R. M. Taranets and A. E. Shishkov, A singular Cauchy problem for the equation of the flow of thin viscous films with nonlinear convection,, Ukr. Math. J., 58 (2006), 250. doi: 10.1007/s11253-006-0066-9.

[21]

L. N. Trefethen, "Spectral Methods in MATLAB,", SIAM, (2000). doi: 10.1137/1.9780898719598.

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, "Sobolev Spaces,", Academic Press, (2003).

[2]

J. Ashmore, A. E. Hosoi and H. A. Stone, The effect of surface tension on rimming flows in a partially filled rotating cylinder,, Journal of Fluid Mechanics, 479 (2003), 65.

[3]

D. Badali, M. Chugunova, D. Pelinovsky and S. Pollack, Regularized shock solutions in coating flows with small surface tension,, Physics of Fluids, 23 (2011).

[4]

B. Jürgen and G. Günther, The thin-film equation: Recent advances and some new perspectives,, Journal of Physics: Condensed Matter, 17 (2005).

[5]

E. Benilov, M. Benilov and N. Kopteva, Steady rimming flows with surface tension,, Journal of Fluid Mechanics, 597 (2008), 91. doi: 10.1017/S0022112007009585.

[6]

E. Beretta, M. Bertsch and R. Dal Passo, Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation,, Arch. Rational Mech. Anal., 129 (1995), 175. doi: 10.1007/BF00379920.

[7]

F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations,, Journal of Diff. Equations, 83 (1990), 179. doi: 10.1016/0022-0396(90)90074-Y.

[8]

A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: The moving contact line with a "porous media'' cut-off of van der Waals interactions,, Nonlinearity, 7 (1994), 1535.

[9]

A. Burchard, M. Chugunova and B. Stephens, Convergence to equilibrium for a thin-film equation on a cylindrical surface,, Comm. Partial Diff. Equations, 37 (2012), 585. doi: 10.1080/03605302.2011.648704.

[10]

M. Chugunova, M. C. Pugh and R. M. Taranets, Nonnegative solutions for a long-wave unstable thin film equation with convection,, SIAM J. on Math. Anal., 42 (2010), 1826. doi: 10.1137/090777062.

[11]

R. V. Craster and O. K. Matar, Dynamics and stability of thin liquid films,, Rev. Modern Physics, 81 (2009), 1131.

[12]

E. Doedel, AUTO: A program for the automatic bifurcation analysis of autonomous systems,, Cong. Num., 30 (1981), 265.

[13]

L. C. Evans, "Partial Differential Equations,", 2nd edition, (2010).

[14]

A. Oron and S. G. Bankoff, Long-scale evolution of thin liquid films,, Rev. Modern Physics, 69 (1997), 931.

[15]

K. Pougatch and I. Frigaard, Thin film flow on the inside surface of a horizontally rotating cylinder: Steady state solutions and their stability,, Physics of Fluids, 23 (2011).

[16]

V. V. Pukhnachev, Motion of a liquid film on the surface of a rotating cylinder in a gravitational field,, J. of App. Mech. and Tech. Physics, 18 (1977), 244.

[17]

V. V. Pukhnachev, Asymptotic solution of the rotating film problem,, Izv. Vyssh. Uchebn. Zaved. Severo-Kavkaz. Reg. Estestv. Nauk, (2004), 191.

[18]

V. V. Pukhnachev, On the equation of a rotating film,, Siberian Math. J., 46 (2005), 913. doi: 10.1007/s11202-005-0088-9.

[19]

A. E. Shishkov and R. M. Taranets, On the equation of the flow of thin films with nonlinear convection in multidimensional domains,, Ukr. Math. Bull., 1 (2004), 402.

[20]

R. M. Taranets and A. E. Shishkov, A singular Cauchy problem for the equation of the flow of thin viscous films with nonlinear convection,, Ukr. Math. J., 58 (2006), 250. doi: 10.1007/s11253-006-0066-9.

[21]

L. N. Trefethen, "Spectral Methods in MATLAB,", SIAM, (2000). doi: 10.1137/1.9780898719598.

[1]

Jitraj Saha, Nilima Das, Jitendra Kumar, Andreas Bück. Numerical solutions for multidimensional fragmentation problems using finite volume methods. Kinetic & Related Models, 2019, 12 (1) : 79-103. doi: 10.3934/krm.2019004

[2]

Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561

[3]

Kersten Schmidt, Ralf Hiptmair. Asymptotic boundary element methods for thin conducting sheets. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 619-647. doi: 10.3934/dcdss.2015.8.619

[4]

Emmanuel Frénod. Homogenization-based numerical methods. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : i-ix. doi: 10.3934/dcdss.201605i

[5]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[6]

Emmanuel Frénod. An attempt at classifying homogenization-based numerical methods. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : i-vi. doi: 10.3934/dcdss.2015.8.1i

[7]

Sebastián J. Ferraro, David Iglesias-Ponte, D. Martín de Diego. Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods. Conference Publications, 2009, 2009 (Special) : 220-229. doi: 10.3934/proc.2009.2009.220

[8]

Timothy Blass, Rafael de la Llave. Perturbation and numerical methods for computing the minimal average energy. Networks & Heterogeneous Media, 2011, 6 (2) : 241-255. doi: 10.3934/nhm.2011.6.241

[9]

Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289

[10]

Yin Yang, Yunqing Huang. Spectral Jacobi-Galerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernel. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 685-702. doi: 10.3934/dcdss.2019043

[11]

Chao Xing, Ping Zhou, Hong Luo. The steady state solutions to thermohaline circulation equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3709-3722. doi: 10.3934/dcdsb.2016117

[12]

Youcef Amirat, Kamel Hamdache. Steady state solutions of ferrofluid flow models. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2329-2355. doi: 10.3934/cpaa.2016039

[13]

Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic & Related Models, 2017, 10 (1) : 1-32. doi: 10.3934/krm.2017001

[14]

Weizhu Bao, Yongyong Cai. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinetic & Related Models, 2013, 6 (1) : 1-135. doi: 10.3934/krm.2013.6.1

[15]

Shalva Amiranashvili, Raimondas  Čiegis, Mindaugas Radziunas. Numerical methods for a class of generalized nonlinear Schrödinger equations. Kinetic & Related Models, 2015, 8 (2) : 215-234. doi: 10.3934/krm.2015.8.215

[16]

Ya-Xiang Yuan. Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 15-34. doi: 10.3934/naco.2011.1.15

[17]

Olivier Guéant. New numerical methods for mean field games with quadratic costs. Networks & Heterogeneous Media, 2012, 7 (2) : 315-336. doi: 10.3934/nhm.2012.7.315

[18]

Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283

[19]

Mohamed Badreddine, Thomas K. DeLillo, Saman Sahraei. A Comparison of some numerical conformal mapping methods for simply and multiply connected domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 55-82. doi: 10.3934/dcdsb.2018100

[20]

Caojin Zhang, George Yin, Qing Zhang, Le Yi Wang. Pollution control for switching diffusion models: Approximation methods and numerical results. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-21. doi: 10.3934/dcdsb.2018310

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]