Citation: |
[1] |
R. A. Adams and J. J. F. Fournier, "Sobolev Spaces," Academic Press, New York-London, 2003 |
[2] |
J. Ashmore, A. E. Hosoi and H. A. Stone, The effect of surface tension on rimming flows in a partially filled rotating cylinder, Journal of Fluid Mechanics, 479 (2003), 65-98. |
[3] |
D. Badali, M. Chugunova, D. Pelinovsky and S. Pollack, Regularized shock solutions in coating flows with small surface tension, Physics of Fluids, 23 (2011), 093103. |
[4] |
B. Jürgen and G. Günther, The thin-film equation: Recent advances and some new perspectives, Journal of Physics: Condensed Matter, 17 (2005), S291-S306. |
[5] |
E. Benilov, M. Benilov and N. Kopteva, Steady rimming flows with surface tension, Journal of Fluid Mechanics, 597 (2008), 91-118.doi: 10.1017/S0022112007009585. |
[6] |
E. Beretta, M. Bertsch and R. Dal Passo, Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation, Arch. Rational Mech. Anal., 129 (1995), 175-200.doi: 10.1007/BF00379920. |
[7] |
F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, Journal of Diff. Equations, 83 (1990), 179-206.doi: 10.1016/0022-0396(90)90074-Y. |
[8] |
A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: The moving contact line with a "porous media'' cut-off of van der Waals interactions, Nonlinearity, 7 (1994), 1535-1564. |
[9] |
A. Burchard, M. Chugunova and B. Stephens, Convergence to equilibrium for a thin-film equation on a cylindrical surface, Comm. Partial Diff. Equations, 37 (2012), 585-609.doi: 10.1080/03605302.2011.648704. |
[10] |
M. Chugunova, M. C. Pugh and R. M. Taranets, Nonnegative solutions for a long-wave unstable thin film equation with convection, SIAM J. on Math. Anal., 42 (2010), 1826-1853.doi: 10.1137/090777062. |
[11] |
R. V. Craster and O. K. Matar, Dynamics and stability of thin liquid films, Rev. Modern Physics, 81 (2009), 1131-1198. |
[12] |
E. Doedel, AUTO: A program for the automatic bifurcation analysis of autonomous systems, Cong. Num., 30 (1981), 265-284. |
[13] |
L. C. Evans, "Partial Differential Equations," 2nd edition, American Mathematical Society, Providence, 2010. |
[14] |
A. Oron and S. G. Bankoff, Long-scale evolution of thin liquid films, Rev. Modern Physics, 69 (1997), 931-980. |
[15] |
K. Pougatch and I. Frigaard, Thin film flow on the inside surface of a horizontally rotating cylinder: Steady state solutions and their stability, Physics of Fluids, 23 (2011), 022102. |
[16] |
V. V. Pukhnachev, Motion of a liquid film on the surface of a rotating cylinder in a gravitational field, J. of App. Mech. and Tech. Physics, 18 (1977), 244-351. |
[17] |
V. V. Pukhnachev, Asymptotic solution of the rotating film problem, Izv. Vyssh. Uchebn. Zaved. Severo-Kavkaz. Reg. Estestv. Nauk, "Mathematics and Continuum Mechanics", (2004), 191-199. |
[18] |
V. V. Pukhnachev, On the equation of a rotating film, Siberian Math. J., 46 (2005), 913-924.doi: 10.1007/s11202-005-0088-9. |
[19] |
A. E. Shishkov and R. M. Taranets, On the equation of the flow of thin films with nonlinear convection in multidimensional domains, Ukr. Math. Bull., 1 (2004), 402-444. |
[20] |
R. M. Taranets and A. E. Shishkov, A singular Cauchy problem for the equation of the flow of thin viscous films with nonlinear convection, Ukr. Math. J., 58 (2006), 250-271.doi: 10.1007/s11253-006-0066-9. |
[21] |
L. N. Trefethen, "Spectral Methods in MATLAB," SIAM, Philadelphia, 2000.doi: 10.1137/1.9780898719598. |