July  2013, 18(5): 1323-1344. doi: 10.3934/dcdsb.2013.18.1323

The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities

1. 

Dipartimento di Matematica, Universitá di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy

2. 

Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127, Pisa, Italy

Received  June 2012 Revised  January 2013 Published  March 2013

We study the long term evolution of the distance between two Keplerian confocal trajectories in the framework of the averaged restricted 3-body problem. The bodies may represent the Sun, a solar system planet and an asteroid. The secular evolution of the orbital elements of the asteroid is computed by averaging the equations of motion over the mean anomalies of the asteroid and the planet. When an orbit crossing with the planet occurs the averaged equations become singular. However, it is possible to define piecewise differentiable solutions by extending the averaged vector field beyond the singularity from both sides of the orbit crossing set [8],[5]. In this paper we improve the previous results, concerning in particular the singularity extraction technique, and show that the extended vector fields are Lipschitz-continuous. Moreover, we consider the distance between the Keplerian trajectories of the small body and of the planet. Apart from exceptional cases, we can select a sign for this distance so that it becomes an analytic map of the orbital elements near to crossing configurations [11]. We prove that the evolution of the `signed' distance along the averaged vector field is more regular than that of the elements in a neighborhood of crossing times. A comparison between averaged and non-averaged evolutions and an application of these results are shown using orbits of near-Earth asteroids.
Citation: Giovanni F. Gronchi, Chiara Tardioli. The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1323-1344. doi: 10.3934/dcdsb.2013.18.1323
References:
[1]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, "Mathematical Aspects of Classical and Celestial Mechanics,", Springer, (1997).   Google Scholar

[2]

R. V. Baluyev and K. V. Kholshevnikov, Distance between Two Arbitrary Unperturbed Orbits,, Cel. Mech. Dyn. Ast., 91 (2005), 287.  doi: 10.1007/s10569-004-3207-1.  Google Scholar

[3]

E. Bowell and K. Muinonen, Earth-crossing asteroids and comets: Groundbased search strategies,, in, (1994), 149.   Google Scholar

[4]

R. A. Broucke and P. J. Cefola, On the equinoctial orbit elements,, Cel. Mech. Dyn. Ast., 5 (1972), 303.   Google Scholar

[5]

G. F. Gronchi, Generalized averaging principle and the secular evolution of planet crossing orbits,, Cel. Mech. Dyn. Ast., 83 (2002), 97.  doi: 10.1023/A:1020178613365.  Google Scholar

[6]

G. F. Gronchi, On the stationary points of the squared distance between two ellipses with a common focus,, SIAM Journ. Sci. Comp., 24 (2002), 61.  doi: 10.1137/S1064827500374170.  Google Scholar

[7]

G. F. Gronchi, An algebraic method to compute the critical points of the distance function between two Keplerian orbits,, Cel. Mech. Dyn. Ast., 93 (2005), 297.  doi: 10.1007/s10569-005-1623-5.  Google Scholar

[8]

G. F. Gronchi and A. Milani, Averaging on Earth-crossing orbits,, Cel. Mech. Dyn. Ast., 71 (1998), 109.  doi: 10.1023/A:1008315321603.  Google Scholar

[9]

G. F. Gronchi and A. Milani, Proper elements for Earth crossing asteroids,, Icarus, 152 (2001), 58.   Google Scholar

[10]

G. F. Gronchi and P. Michel, Secular orbital evolution, proper elements and proper frequencies for near-earth asteroids: A comparison between semianalytic theory and numerical integrations,, Icarus, 152 (2001), 48.   Google Scholar

[11]

G. F. Gronchi and G. Tommei, On the uncertainty of the minimal distance between two confocal Keplerian orbits,, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 755.  doi: 10.3934/dcdsb.2007.7.755.  Google Scholar

[12]

K. V. Kholshevnikov and N. Vassiliev, On the distance function between two keplerian elliptic orbits,, Cel. Mech. Dyn. Ast., 75 (1999), 75.  doi: 10.1023/A:1008312521428.  Google Scholar

[13]

H. Kinoshita and H. Nakai, General solution of the Kozai mechanism,, Cel. Mech. Dyn. Ast., 98 (2007), 67.  doi: 10.1007/s10569-007-9069-6.  Google Scholar

[14]

Y. Kozai, Secular perturbation of asteroids with high inclination and eccentricity,, Astron. Journ., 67 (1962), 591.   Google Scholar

[15]

M. L. Lidov, The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies,, Plan. Spa. Sci., 9 (1962), 719.   Google Scholar

[16]

A. Milani, S. R. Chesley, M. E. Sansaturio, G. Tommei and G. Valsecchi, Nonlinear impact monitoring: Line of variation searches for impactors,, Icarus, 173 (2005), 362.   Google Scholar

[17]

A. Milani and G. F. Gronchi, "Theory of Orbit Determination,", Cambridge Univ. Press, (2010).   Google Scholar

[18]

G. B. Valsecchi, A. Milani, G. F. Gronchi and S. R. Chesley, Resonant returns to close approaches: Analytical theory,, Astron. Astrophys., 408 (2003), 1179.   Google Scholar

[19]

A. Whipple, Lyapunov times of the inner asteroids,, Icarus, 115 (1995), 347.   Google Scholar

show all references

References:
[1]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, "Mathematical Aspects of Classical and Celestial Mechanics,", Springer, (1997).   Google Scholar

[2]

R. V. Baluyev and K. V. Kholshevnikov, Distance between Two Arbitrary Unperturbed Orbits,, Cel. Mech. Dyn. Ast., 91 (2005), 287.  doi: 10.1007/s10569-004-3207-1.  Google Scholar

[3]

E. Bowell and K. Muinonen, Earth-crossing asteroids and comets: Groundbased search strategies,, in, (1994), 149.   Google Scholar

[4]

R. A. Broucke and P. J. Cefola, On the equinoctial orbit elements,, Cel. Mech. Dyn. Ast., 5 (1972), 303.   Google Scholar

[5]

G. F. Gronchi, Generalized averaging principle and the secular evolution of planet crossing orbits,, Cel. Mech. Dyn. Ast., 83 (2002), 97.  doi: 10.1023/A:1020178613365.  Google Scholar

[6]

G. F. Gronchi, On the stationary points of the squared distance between two ellipses with a common focus,, SIAM Journ. Sci. Comp., 24 (2002), 61.  doi: 10.1137/S1064827500374170.  Google Scholar

[7]

G. F. Gronchi, An algebraic method to compute the critical points of the distance function between two Keplerian orbits,, Cel. Mech. Dyn. Ast., 93 (2005), 297.  doi: 10.1007/s10569-005-1623-5.  Google Scholar

[8]

G. F. Gronchi and A. Milani, Averaging on Earth-crossing orbits,, Cel. Mech. Dyn. Ast., 71 (1998), 109.  doi: 10.1023/A:1008315321603.  Google Scholar

[9]

G. F. Gronchi and A. Milani, Proper elements for Earth crossing asteroids,, Icarus, 152 (2001), 58.   Google Scholar

[10]

G. F. Gronchi and P. Michel, Secular orbital evolution, proper elements and proper frequencies for near-earth asteroids: A comparison between semianalytic theory and numerical integrations,, Icarus, 152 (2001), 48.   Google Scholar

[11]

G. F. Gronchi and G. Tommei, On the uncertainty of the minimal distance between two confocal Keplerian orbits,, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 755.  doi: 10.3934/dcdsb.2007.7.755.  Google Scholar

[12]

K. V. Kholshevnikov and N. Vassiliev, On the distance function between two keplerian elliptic orbits,, Cel. Mech. Dyn. Ast., 75 (1999), 75.  doi: 10.1023/A:1008312521428.  Google Scholar

[13]

H. Kinoshita and H. Nakai, General solution of the Kozai mechanism,, Cel. Mech. Dyn. Ast., 98 (2007), 67.  doi: 10.1007/s10569-007-9069-6.  Google Scholar

[14]

Y. Kozai, Secular perturbation of asteroids with high inclination and eccentricity,, Astron. Journ., 67 (1962), 591.   Google Scholar

[15]

M. L. Lidov, The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies,, Plan. Spa. Sci., 9 (1962), 719.   Google Scholar

[16]

A. Milani, S. R. Chesley, M. E. Sansaturio, G. Tommei and G. Valsecchi, Nonlinear impact monitoring: Line of variation searches for impactors,, Icarus, 173 (2005), 362.   Google Scholar

[17]

A. Milani and G. F. Gronchi, "Theory of Orbit Determination,", Cambridge Univ. Press, (2010).   Google Scholar

[18]

G. B. Valsecchi, A. Milani, G. F. Gronchi and S. R. Chesley, Resonant returns to close approaches: Analytical theory,, Astron. Astrophys., 408 (2003), 1179.   Google Scholar

[19]

A. Whipple, Lyapunov times of the inner asteroids,, Icarus, 115 (1995), 347.   Google Scholar

[1]

Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315

[2]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[3]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 867-884. doi: 10.3934/cpaa.2020294

[4]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[5]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[6]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[7]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[8]

Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020362

[9]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[12]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[13]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[14]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[15]

Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085

[16]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[17]

Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020359

[18]

Chang-Yuan Cheng, Shyan-Shiou Chen, Rui-Hua Chen. Delay-induced spiking dynamics in integrate-and-fire neurons. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020363

[19]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[20]

Sze-Bi Hsu, Yu Jin. The dynamics of a two host-two virus system in a chemostat environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 415-441. doi: 10.3934/dcdsb.2020298

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]