July  2013, 18(5): 1323-1344. doi: 10.3934/dcdsb.2013.18.1323

The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities

1. 

Dipartimento di Matematica, Universitá di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy

2. 

Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127, Pisa, Italy

Received  June 2012 Revised  January 2013 Published  March 2013

We study the long term evolution of the distance between two Keplerian confocal trajectories in the framework of the averaged restricted 3-body problem. The bodies may represent the Sun, a solar system planet and an asteroid. The secular evolution of the orbital elements of the asteroid is computed by averaging the equations of motion over the mean anomalies of the asteroid and the planet. When an orbit crossing with the planet occurs the averaged equations become singular. However, it is possible to define piecewise differentiable solutions by extending the averaged vector field beyond the singularity from both sides of the orbit crossing set [8],[5]. In this paper we improve the previous results, concerning in particular the singularity extraction technique, and show that the extended vector fields are Lipschitz-continuous. Moreover, we consider the distance between the Keplerian trajectories of the small body and of the planet. Apart from exceptional cases, we can select a sign for this distance so that it becomes an analytic map of the orbital elements near to crossing configurations [11]. We prove that the evolution of the `signed' distance along the averaged vector field is more regular than that of the elements in a neighborhood of crossing times. A comparison between averaged and non-averaged evolutions and an application of these results are shown using orbits of near-Earth asteroids.
Citation: Giovanni F. Gronchi, Chiara Tardioli. The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1323-1344. doi: 10.3934/dcdsb.2013.18.1323
References:
[1]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, "Mathematical Aspects of Classical and Celestial Mechanics,", Springer, (1997). Google Scholar

[2]

R. V. Baluyev and K. V. Kholshevnikov, Distance between Two Arbitrary Unperturbed Orbits,, Cel. Mech. Dyn. Ast., 91 (2005), 287. doi: 10.1007/s10569-004-3207-1. Google Scholar

[3]

E. Bowell and K. Muinonen, Earth-crossing asteroids and comets: Groundbased search strategies,, in, (1994), 149. Google Scholar

[4]

R. A. Broucke and P. J. Cefola, On the equinoctial orbit elements,, Cel. Mech. Dyn. Ast., 5 (1972), 303. Google Scholar

[5]

G. F. Gronchi, Generalized averaging principle and the secular evolution of planet crossing orbits,, Cel. Mech. Dyn. Ast., 83 (2002), 97. doi: 10.1023/A:1020178613365. Google Scholar

[6]

G. F. Gronchi, On the stationary points of the squared distance between two ellipses with a common focus,, SIAM Journ. Sci. Comp., 24 (2002), 61. doi: 10.1137/S1064827500374170. Google Scholar

[7]

G. F. Gronchi, An algebraic method to compute the critical points of the distance function between two Keplerian orbits,, Cel. Mech. Dyn. Ast., 93 (2005), 297. doi: 10.1007/s10569-005-1623-5. Google Scholar

[8]

G. F. Gronchi and A. Milani, Averaging on Earth-crossing orbits,, Cel. Mech. Dyn. Ast., 71 (1998), 109. doi: 10.1023/A:1008315321603. Google Scholar

[9]

G. F. Gronchi and A. Milani, Proper elements for Earth crossing asteroids,, Icarus, 152 (2001), 58. Google Scholar

[10]

G. F. Gronchi and P. Michel, Secular orbital evolution, proper elements and proper frequencies for near-earth asteroids: A comparison between semianalytic theory and numerical integrations,, Icarus, 152 (2001), 48. Google Scholar

[11]

G. F. Gronchi and G. Tommei, On the uncertainty of the minimal distance between two confocal Keplerian orbits,, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 755. doi: 10.3934/dcdsb.2007.7.755. Google Scholar

[12]

K. V. Kholshevnikov and N. Vassiliev, On the distance function between two keplerian elliptic orbits,, Cel. Mech. Dyn. Ast., 75 (1999), 75. doi: 10.1023/A:1008312521428. Google Scholar

[13]

H. Kinoshita and H. Nakai, General solution of the Kozai mechanism,, Cel. Mech. Dyn. Ast., 98 (2007), 67. doi: 10.1007/s10569-007-9069-6. Google Scholar

[14]

Y. Kozai, Secular perturbation of asteroids with high inclination and eccentricity,, Astron. Journ., 67 (1962), 591. Google Scholar

[15]

M. L. Lidov, The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies,, Plan. Spa. Sci., 9 (1962), 719. Google Scholar

[16]

A. Milani, S. R. Chesley, M. E. Sansaturio, G. Tommei and G. Valsecchi, Nonlinear impact monitoring: Line of variation searches for impactors,, Icarus, 173 (2005), 362. Google Scholar

[17]

A. Milani and G. F. Gronchi, "Theory of Orbit Determination,", Cambridge Univ. Press, (2010). Google Scholar

[18]

G. B. Valsecchi, A. Milani, G. F. Gronchi and S. R. Chesley, Resonant returns to close approaches: Analytical theory,, Astron. Astrophys., 408 (2003), 1179. Google Scholar

[19]

A. Whipple, Lyapunov times of the inner asteroids,, Icarus, 115 (1995), 347. Google Scholar

show all references

References:
[1]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, "Mathematical Aspects of Classical and Celestial Mechanics,", Springer, (1997). Google Scholar

[2]

R. V. Baluyev and K. V. Kholshevnikov, Distance between Two Arbitrary Unperturbed Orbits,, Cel. Mech. Dyn. Ast., 91 (2005), 287. doi: 10.1007/s10569-004-3207-1. Google Scholar

[3]

E. Bowell and K. Muinonen, Earth-crossing asteroids and comets: Groundbased search strategies,, in, (1994), 149. Google Scholar

[4]

R. A. Broucke and P. J. Cefola, On the equinoctial orbit elements,, Cel. Mech. Dyn. Ast., 5 (1972), 303. Google Scholar

[5]

G. F. Gronchi, Generalized averaging principle and the secular evolution of planet crossing orbits,, Cel. Mech. Dyn. Ast., 83 (2002), 97. doi: 10.1023/A:1020178613365. Google Scholar

[6]

G. F. Gronchi, On the stationary points of the squared distance between two ellipses with a common focus,, SIAM Journ. Sci. Comp., 24 (2002), 61. doi: 10.1137/S1064827500374170. Google Scholar

[7]

G. F. Gronchi, An algebraic method to compute the critical points of the distance function between two Keplerian orbits,, Cel. Mech. Dyn. Ast., 93 (2005), 297. doi: 10.1007/s10569-005-1623-5. Google Scholar

[8]

G. F. Gronchi and A. Milani, Averaging on Earth-crossing orbits,, Cel. Mech. Dyn. Ast., 71 (1998), 109. doi: 10.1023/A:1008315321603. Google Scholar

[9]

G. F. Gronchi and A. Milani, Proper elements for Earth crossing asteroids,, Icarus, 152 (2001), 58. Google Scholar

[10]

G. F. Gronchi and P. Michel, Secular orbital evolution, proper elements and proper frequencies for near-earth asteroids: A comparison between semianalytic theory and numerical integrations,, Icarus, 152 (2001), 48. Google Scholar

[11]

G. F. Gronchi and G. Tommei, On the uncertainty of the minimal distance between two confocal Keplerian orbits,, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 755. doi: 10.3934/dcdsb.2007.7.755. Google Scholar

[12]

K. V. Kholshevnikov and N. Vassiliev, On the distance function between two keplerian elliptic orbits,, Cel. Mech. Dyn. Ast., 75 (1999), 75. doi: 10.1023/A:1008312521428. Google Scholar

[13]

H. Kinoshita and H. Nakai, General solution of the Kozai mechanism,, Cel. Mech. Dyn. Ast., 98 (2007), 67. doi: 10.1007/s10569-007-9069-6. Google Scholar

[14]

Y. Kozai, Secular perturbation of asteroids with high inclination and eccentricity,, Astron. Journ., 67 (1962), 591. Google Scholar

[15]

M. L. Lidov, The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies,, Plan. Spa. Sci., 9 (1962), 719. Google Scholar

[16]

A. Milani, S. R. Chesley, M. E. Sansaturio, G. Tommei and G. Valsecchi, Nonlinear impact monitoring: Line of variation searches for impactors,, Icarus, 173 (2005), 362. Google Scholar

[17]

A. Milani and G. F. Gronchi, "Theory of Orbit Determination,", Cambridge Univ. Press, (2010). Google Scholar

[18]

G. B. Valsecchi, A. Milani, G. F. Gronchi and S. R. Chesley, Resonant returns to close approaches: Analytical theory,, Astron. Astrophys., 408 (2003), 1179. Google Scholar

[19]

A. Whipple, Lyapunov times of the inner asteroids,, Icarus, 115 (1995), 347. Google Scholar

[1]

Ming-Chia Li, Ming-Jiea Lyu. Positive topological entropy for multidimensional perturbations of topologically crossing homoclinicity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 243-252. doi: 10.3934/dcds.2011.30.243

[2]

Silviu-Iulian Niculescu, Peter S. Kim, Keqin Gu, Peter P. Lee, Doron Levy. Stability crossing boundaries of delay systems modeling immune dynamics in leukemia. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 129-156. doi: 10.3934/dcdsb.2010.13.129

[3]

Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883

[4]

Benoît Grébert, Tiphaine Jézéquel, Laurent Thomann. Dynamics of Klein-Gordon on a compact surface near a homoclinic orbit. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3485-3510. doi: 10.3934/dcds.2014.34.3485

[5]

David J. W. Simpson. On resolving singularities of piecewise-smooth discontinuous vector fields via small perturbations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3803-3830. doi: 10.3934/dcds.2014.34.3803

[6]

Cristina Anton, Alan Yong. Stochastic dynamics and survival analysis of a cell population model with random perturbations. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1077-1098. doi: 10.3934/mbe.2018048

[7]

M. Ollé, J.R. Pacha, J. Villanueva. Dynamics close to a non semi-simple 1:-1 resonant periodic orbit. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 799-816. doi: 10.3934/dcdsb.2005.5.799

[8]

Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Dirichlet problems with a crossing reaction. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2749-2766. doi: 10.3934/cpaa.2014.13.2749

[9]

Emile Franc Doungmo Goufo, Melusi Khumalo, Patrick M. Tchepmo Djomegni. Perturbations of Hindmarsh-Rose neuron dynamics by fractional operators: Bifurcation, firing and chaotic bursts. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 663-682. doi: 10.3934/dcdss.2020036

[10]

Qun Liu, Daqing Jiang. Dynamics of a multigroup SIRS epidemic model with random perturbations and varying total population size. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1089-1110. doi: 10.3934/cpaa.2020050

[11]

Fábio R. Pereira. Multiplicity results for fractional systems crossing high eigenvalues. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2069-2088. doi: 10.3934/cpaa.2017102

[12]

Xianling Fan, Yuanzhang Zhao, Guifang Huang. Existence of solutions for the $p-$Laplacian with crossing nonlinearity. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 1019-1024. doi: 10.3934/dcds.2002.8.1019

[13]

Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91

[14]

Stefano Galatolo. Orbit complexity and data compression. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 477-486. doi: 10.3934/dcds.2001.7.477

[15]

Shiqiu Liu, Frédérique Oggier. On applications of orbit codes to storage. Advances in Mathematics of Communications, 2016, 10 (1) : 113-130. doi: 10.3934/amc.2016.10.113

[16]

Peng Sun. Minimality and gluing orbit property. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4041-4056. doi: 10.3934/dcds.2019162

[17]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[18]

Natalia Skripnik. Averaging of fuzzy integral equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118

[19]

Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177

[20]

Andres del Junco, Daniel J. Rudolph, Benjamin Weiss. Measured topological orbit and Kakutani equivalence. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 221-238. doi: 10.3934/dcdss.2009.2.221

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]