January  2013, 18(1): 133-145. doi: 10.3934/dcdsb.2013.18.133

Bifurcations of a nongeneric heteroclinic loop with nonhyperbolic equilibria

1. 

College of Mathematics and Science, China University of Geosciences(Beijing), Beijing, 100083, China, China

2. 

Department of Mathematics, East China Normal University, Shanghai, 200241

3. 

Department of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin, 130024, China

Received  March 2011 Revised  July 2012 Published  September 2012

In this paper, using the local moving frame approach, we investigate bifurcations of nongeneric heteroclinic loop with a nonhyperbolic equilibrium $p_1$ and a hyperbolic saddle $p_2$, where $p_1$ is assumed to undergo a transcritical bifurcation. Firstly, we establish the persistence of a nongeneric heteroclinic loop, the existence of a homoclinic loop and a periodic orbit when the transcritical bifurcation does not occur. Secondly, bifurcations of a nongeneric heteroclinic loop accompanied with a transcritical bifurcation are discussed. We obtain the existence of heteroclinic orbits, a homoclinic loop, a heteroclinic loop and a periodic orbit. Some bifurcation patterns different from the case of the generic heteroclinic loop accompanied with transcritical bifurcation are revealed. The results achieved here can be extended to higher dimensional systems.
Citation: Fengjie Geng, Junfang Zhao, Deming Zhu, Weipeng Zhang. Bifurcations of a nongeneric heteroclinic loop with nonhyperbolic equilibria. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 133-145. doi: 10.3934/dcdsb.2013.18.133
References:
[1]

S. N. Chow, B. Deng and J. M. Friedman, Theory and applicationsof a nongeneric heteroclinic loop bifurcation,, SIAM J. Appl. Math., 59 (1999), 1303.   Google Scholar

[2]

A. R. Champneys, Codimension-one persistence beyond allorders of homoclinic orbits to singular saddle centres in reversible systems,, Nonlinearity, 14 (2001), 87.   Google Scholar

[3]

F. J. Geng, D. Liu and D. M. Zhu, Bifurcations of generic heteroclinic loop accompanied by transcritical bifurcation,, International J. Bifurcation and Chaos, 4 (2008), 1069.   Google Scholar

[4]

X. B. Liu, X. L. Fu and D. M. Zhu, Homoclinic Bifurcation with non hyperbolic equilibria,, Nonlinear Analysis, 66 (2007), 2931.  doi: 10.1016/j.na.2006.04.014.  Google Scholar

[5]

X. B. Liu and D. M. Zhu, Homoclinic snaking near a heteroclinic cycles inreversible systems,, Appl. Math. J. Chinese Univ. Ser. A (in Chinese), 19 (2004), 401.   Google Scholar

[6]

J. D. M. Rademacher, Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit,, J. Differential Equations, 218 (2005), 390.  doi: 10.1016/j.jde.2005.03.016.  Google Scholar

[7]

J. H. Sun and D. J. Luo, Local and global bifurcations with nonhyperbolic equilibria,, Science in China, 37 (1994), 523.   Google Scholar

[8]

S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and Chaos,", Springer-Verlag, (1990).   Google Scholar

[9]

D. M. Zhu and Z. H. Xia, Bifurcations of Morse-Smale dynamical systems,, Science in China, 41 (1998), 837.   Google Scholar

show all references

References:
[1]

S. N. Chow, B. Deng and J. M. Friedman, Theory and applicationsof a nongeneric heteroclinic loop bifurcation,, SIAM J. Appl. Math., 59 (1999), 1303.   Google Scholar

[2]

A. R. Champneys, Codimension-one persistence beyond allorders of homoclinic orbits to singular saddle centres in reversible systems,, Nonlinearity, 14 (2001), 87.   Google Scholar

[3]

F. J. Geng, D. Liu and D. M. Zhu, Bifurcations of generic heteroclinic loop accompanied by transcritical bifurcation,, International J. Bifurcation and Chaos, 4 (2008), 1069.   Google Scholar

[4]

X. B. Liu, X. L. Fu and D. M. Zhu, Homoclinic Bifurcation with non hyperbolic equilibria,, Nonlinear Analysis, 66 (2007), 2931.  doi: 10.1016/j.na.2006.04.014.  Google Scholar

[5]

X. B. Liu and D. M. Zhu, Homoclinic snaking near a heteroclinic cycles inreversible systems,, Appl. Math. J. Chinese Univ. Ser. A (in Chinese), 19 (2004), 401.   Google Scholar

[6]

J. D. M. Rademacher, Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit,, J. Differential Equations, 218 (2005), 390.  doi: 10.1016/j.jde.2005.03.016.  Google Scholar

[7]

J. H. Sun and D. J. Luo, Local and global bifurcations with nonhyperbolic equilibria,, Science in China, 37 (1994), 523.   Google Scholar

[8]

S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and Chaos,", Springer-Verlag, (1990).   Google Scholar

[9]

D. M. Zhu and Z. H. Xia, Bifurcations of Morse-Smale dynamical systems,, Science in China, 41 (1998), 837.   Google Scholar

[1]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[2]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133

[3]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[4]

Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021003

[5]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[6]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[7]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020394

[8]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[9]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[10]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[11]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[12]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[13]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[14]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[15]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[16]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[17]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[18]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[19]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[20]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

[Back to Top]