Citation: |
[1] |
S. N. Chow, B. Deng and J. M. Friedman, Theory and applicationsof a nongeneric heteroclinic loop bifurcation, SIAM J. Appl. Math., 59 (1999), 1303-1321. |
[2] |
A. R. Champneys, Codimension-one persistence beyond allorders of homoclinic orbits to singular saddle centres in reversible systems, Nonlinearity, 14 (2001), 87-112. |
[3] |
F. J. Geng, D. Liu and D. M. Zhu, Bifurcations of generic heteroclinic loop accompanied by transcritical bifurcation, International J. Bifurcation and Chaos, 4 (2008), 1069-1083. |
[4] |
X. B. Liu, X. L. Fu and D. M. Zhu, Homoclinic Bifurcation with non hyperbolic equilibria, Nonlinear Analysis, 66 (2007), 2931-2939.doi: 10.1016/j.na.2006.04.014. |
[5] |
X. B. Liu and D. M. Zhu, Homoclinic snaking near a heteroclinic cycles inreversible systems, Appl. Math. J. Chinese Univ. Ser. A (in Chinese), 19 (2004), 401-408. |
[6] |
J. D. M. Rademacher, Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit, J. Differential Equations, 218 (2005), 390-443.doi: 10.1016/j.jde.2005.03.016. |
[7] |
J. H. Sun and D. J. Luo, Local and global bifurcations with nonhyperbolic equilibria, Science in China, Series A, 37 (1994), 523-534. |
[8] |
S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and Chaos," Springer-Verlag, New York, 1990. |
[9] |
D. M. Zhu and Z. H. Xia, Bifurcations of Morse-Smale dynamical systems, Science in China, Series A, 41 (1998), 837-848. |