\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation

Abstract / Introduction Related Papers Cited by
  • We discuss the application of the Mountain Pass Algorithm to the so-called quasi-linear Schrödinger equation, which is naturally associated with a class of nonsmooth functionals so that the classical algorithm cannot directly be used. A change of variable allows us to deal with the lack of regularity. We establish the convergence of a mountain pass algorithm in this setting. Some numerical experiments are also performed and lead to some conjectures.
    Mathematics Subject Classification: Primary: 35J62, 58E05; Secondary: 35D99, 65N12, 35J70.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Ambrosetti and Z.-Q. Wang, Positive solutions to a class of quasilinear elliptic equations on $\mathbbR$, Disc. Cont. Dyna. Syst. - A, 9 (2003), 55-68.doi: 10.3934/dcds.2003.9.55.

    [2]

    M. Caliari and M. Squassina, Numerical computation of soliton dynamics for NLS equations in a driving potential, Electron. J. Differential Equations, 89 (2010), 1-12, arXiv:0908.3648.

    [3]

    M. Caliari and M. SquassinaOn a bifurcation value related to quasi-linear Schrödinger equations, J. Fixed Point Theory Appl., to Appear, arXiv:1111.0526v3.

    [4]

    Y. S. Choi and P. J. McKenna, A mountain pass method for the numerical solution of semilinear elliptic problems, Nonlinear Anal., 20 (1993), 417-437.doi: 10.1016/0362-546X(93)90147-K.

    [5]

    M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal., 56 (2004), 213-226.doi: 10.1016/j.na.2003.09.008.

    [6]

    M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations, Nonlinearity, 23 (2010), 1353-1385.doi: 10.1088/0951-7715/23/6/006.

    [7]

    J.-N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation properties for continuous functionals and critical point theory, Topol. Methods Nonlinear Anal., 1 (1993), 151-171.

    [8]

    W. Y. Ding and W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986), 283-308.doi: 10.1007/BF00282336.

    [9]

    J. M. do Ó and U. Severo, Solitary waves for a class of quasilinear Schrödinger equations in dimension two, Calculus of Variations, 38 (2010), 275-315.doi: 10.1007/s00526-009-0286-6.

    [10]

    B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.

    [11]

    F. Gladiali and M. Squassina, Uniqueness of ground states for a class of quasi-linear elliptic equations, Adv. Nonlinear Anal., 1 (2012), 159-179, arXiv:1108.0207.doi: 10.1515/ana-2011-0001.

    [12]

    E. Gloss, Existence and concentration of positive solutions for a quasilinear equation in $\mathbbR^N$, J. Math. Anal. Appl., 371 (2010), 465-484.doi: 10.1016/j.jmaa.2010.05.033.

    [13]

    C. Grumiau and C. TroestlerConvergence of a mountain pass type algorithm for strongly indefinite problems and systems, Preprint, arXiv:1301.1456.

    [14]

    L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\mathbbR^N$, Proc. Amer. Math. Soc., 131 (2002), 2399-2408.doi: 10.1090/S0002-9939-02-06821-1.

    [15]

    A. S. Lewis and C. H. J. Pang, Level set methods for finding critical points of mountain pass type, Nonlinear Analysis, 74 (2011), 4058-4082.doi: 10.1016/j.na.2011.03.039.

    [16]

    Y. Li and J. Zhou, A minimax method for finding multiple critical points and its applications to semilinear elliptic pde's, SIAM Sci. Comp., 23 (2001), 840-865.doi: 10.1137/S1064827599365641.

    [17]

    Y. Li and J. Zhou, Convergence results of a local minimax method for finding multiple critical points, SIAM Sci. Comp., 24 (2002), 865-885.doi: 10.1137/S1064827500379732.

    [18]

    E. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math., 74 (1983), 441-448.doi: 10.1007/BF01394245.

    [19]

    J. Q. Liu, Y. Q. Wang and Z. Q. Wang, Solutions for quasi-linear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004), 879-901.doi: 10.1081/PDE-120037335.

    [20]

    P. Pucci and J. Serrin, "The Maximum Principle," Progress in Nonlinear Differential Equations and Their Applications, 73, Birkhäuser Verlag, 2007.

    [21]

    J. R. Shewchuk, Delaunay refinement algorithms for triangular mesh generation, Computational Geometry: Theory and Applications, 22 (2002), 21-74.doi: 10.1016/S0925-7721(01)00047-5.

    [22]

    A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.doi: 10.1016/j.jfa.2009.09.013.

    [23]

    N. Tacheny and C. Troestler, A mountain pass algorithm with projector, J. Comput. Appl. Math., 236 (2012), 2025-2036.doi: 10.1016/j.cam.2011.11.011.

    [24]

    M. Willem, "Minimax Theorems," Progress in Nonlinear Differential Equations and Their Applications, 24, Birkhäuser Boston, Inc., Boston, MA, 1996.doi: 10.1007/978-1-4612-4146-1.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(109) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return