July  2013, 18(5): 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation

1. 

Université de Mons, Institut Complexys, Département de Mathématique, Service d'Analyse Numérique, Place du Parc, 20, B-7000 Mons, Belgium, Belgium

2. 

Dipartimento di Informatica, Università degli Studi di Verona, Cá Vignal 2, Strada Le Grazie 15, I-37134 Veron

Received  May 2012 Revised  December 2012 Published  March 2013

We discuss the application of the Mountain Pass Algorithm to the so-called quasi-linear Schrödinger equation, which is naturally associated with a class of nonsmooth functionals so that the classical algorithm cannot directly be used. A change of variable allows us to deal with the lack of regularity. We establish the convergence of a mountain pass algorithm in this setting. Some numerical experiments are also performed and lead to some conjectures.
Citation: Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345
References:
[1]

A. Ambrosetti and Z.-Q. Wang, Positive solutions to a class of quasilinear elliptic equations on $\mathbbR$,, Disc. Cont. Dyna. Syst. - A, 9 (2003), 55.  doi: 10.3934/dcds.2003.9.55.  Google Scholar

[2]

M. Caliari and M. Squassina, Numerical computation of soliton dynamics for NLS equations in a driving potential,, Electron. J. Differential Equations, 89 (2010), 1.   Google Scholar

[3]

M. Caliari and M. Squassina, On a bifurcation value related to quasi-linear Schrödinger equations,, J. Fixed Point Theory Appl., ().   Google Scholar

[4]

Y. S. Choi and P. J. McKenna, A mountain pass method for the numerical solution of semilinear elliptic problems,, Nonlinear Anal., 20 (1993), 417.  doi: 10.1016/0362-546X(93)90147-K.  Google Scholar

[5]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach,, Nonlinear Anal., 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[6]

M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations,, Nonlinearity, 23 (2010), 1353.  doi: 10.1088/0951-7715/23/6/006.  Google Scholar

[7]

J.-N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation properties for continuous functionals and critical point theory,, Topol. Methods Nonlinear Anal., 1 (1993), 151.   Google Scholar

[8]

W. Y. Ding and W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation,, Arch. Rational Mech. Anal., 91 (1986), 283.  doi: 10.1007/BF00282336.  Google Scholar

[9]

J. M. do Ó and U. Severo, Solitary waves for a class of quasilinear Schrödinger equations in dimension two,, Calculus of Variations, 38 (2010), 275.  doi: 10.1007/s00526-009-0286-6.  Google Scholar

[10]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.   Google Scholar

[11]

F. Gladiali and M. Squassina, Uniqueness of ground states for a class of quasi-linear elliptic equations,, Adv. Nonlinear Anal., 1 (2012), 159.  doi: 10.1515/ana-2011-0001.  Google Scholar

[12]

E. Gloss, Existence and concentration of positive solutions for a quasilinear equation in $\mathbbR^N$,, J. Math. Anal. Appl., 371 (2010), 465.  doi: 10.1016/j.jmaa.2010.05.033.  Google Scholar

[13]

C. Grumiau and C. Troestler, Convergence of a mountain pass type algorithm for strongly indefinite problems and systems,, Preprint, ().   Google Scholar

[14]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\mathbbR^N$,, Proc. Amer. Math. Soc., 131 (2002), 2399.  doi: 10.1090/S0002-9939-02-06821-1.  Google Scholar

[15]

A. S. Lewis and C. H. J. Pang, Level set methods for finding critical points of mountain pass type,, Nonlinear Analysis, 74 (2011), 4058.  doi: 10.1016/j.na.2011.03.039.  Google Scholar

[16]

Y. Li and J. Zhou, A minimax method for finding multiple critical points and its applications to semilinear elliptic pde's,, SIAM Sci. Comp., 23 (2001), 840.  doi: 10.1137/S1064827599365641.  Google Scholar

[17]

Y. Li and J. Zhou, Convergence results of a local minimax method for finding multiple critical points,, SIAM Sci. Comp., 24 (2002), 865.  doi: 10.1137/S1064827500379732.  Google Scholar

[18]

E. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains,, Invent. Math., 74 (1983), 441.  doi: 10.1007/BF01394245.  Google Scholar

[19]

J. Q. Liu, Y. Q. Wang and Z. Q. Wang, Solutions for quasi-linear Schrödinger equations via the Nehari method,, Comm. Partial Differential Equations, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[20]

P. Pucci and J. Serrin, "The Maximum Principle,", Progress in Nonlinear Differential Equations and Their Applications, 73 (2007).   Google Scholar

[21]

J. R. Shewchuk, Delaunay refinement algorithms for triangular mesh generation,, Computational Geometry: Theory and Applications, 22 (2002), 21.  doi: 10.1016/S0925-7721(01)00047-5.  Google Scholar

[22]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems,, J. Funct. Anal., 257 (2009), 3802.  doi: 10.1016/j.jfa.2009.09.013.  Google Scholar

[23]

N. Tacheny and C. Troestler, A mountain pass algorithm with projector,, J. Comput. Appl. Math., 236 (2012), 2025.  doi: 10.1016/j.cam.2011.11.011.  Google Scholar

[24]

M. Willem, "Minimax Theorems,", Progress in Nonlinear Differential Equations and Their Applications, 24 (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and Z.-Q. Wang, Positive solutions to a class of quasilinear elliptic equations on $\mathbbR$,, Disc. Cont. Dyna. Syst. - A, 9 (2003), 55.  doi: 10.3934/dcds.2003.9.55.  Google Scholar

[2]

M. Caliari and M. Squassina, Numerical computation of soliton dynamics for NLS equations in a driving potential,, Electron. J. Differential Equations, 89 (2010), 1.   Google Scholar

[3]

M. Caliari and M. Squassina, On a bifurcation value related to quasi-linear Schrödinger equations,, J. Fixed Point Theory Appl., ().   Google Scholar

[4]

Y. S. Choi and P. J. McKenna, A mountain pass method for the numerical solution of semilinear elliptic problems,, Nonlinear Anal., 20 (1993), 417.  doi: 10.1016/0362-546X(93)90147-K.  Google Scholar

[5]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach,, Nonlinear Anal., 56 (2004), 213.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[6]

M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations,, Nonlinearity, 23 (2010), 1353.  doi: 10.1088/0951-7715/23/6/006.  Google Scholar

[7]

J.-N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation properties for continuous functionals and critical point theory,, Topol. Methods Nonlinear Anal., 1 (1993), 151.   Google Scholar

[8]

W. Y. Ding and W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation,, Arch. Rational Mech. Anal., 91 (1986), 283.  doi: 10.1007/BF00282336.  Google Scholar

[9]

J. M. do Ó and U. Severo, Solitary waves for a class of quasilinear Schrödinger equations in dimension two,, Calculus of Variations, 38 (2010), 275.  doi: 10.1007/s00526-009-0286-6.  Google Scholar

[10]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.   Google Scholar

[11]

F. Gladiali and M. Squassina, Uniqueness of ground states for a class of quasi-linear elliptic equations,, Adv. Nonlinear Anal., 1 (2012), 159.  doi: 10.1515/ana-2011-0001.  Google Scholar

[12]

E. Gloss, Existence and concentration of positive solutions for a quasilinear equation in $\mathbbR^N$,, J. Math. Anal. Appl., 371 (2010), 465.  doi: 10.1016/j.jmaa.2010.05.033.  Google Scholar

[13]

C. Grumiau and C. Troestler, Convergence of a mountain pass type algorithm for strongly indefinite problems and systems,, Preprint, ().   Google Scholar

[14]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $\mathbbR^N$,, Proc. Amer. Math. Soc., 131 (2002), 2399.  doi: 10.1090/S0002-9939-02-06821-1.  Google Scholar

[15]

A. S. Lewis and C. H. J. Pang, Level set methods for finding critical points of mountain pass type,, Nonlinear Analysis, 74 (2011), 4058.  doi: 10.1016/j.na.2011.03.039.  Google Scholar

[16]

Y. Li and J. Zhou, A minimax method for finding multiple critical points and its applications to semilinear elliptic pde's,, SIAM Sci. Comp., 23 (2001), 840.  doi: 10.1137/S1064827599365641.  Google Scholar

[17]

Y. Li and J. Zhou, Convergence results of a local minimax method for finding multiple critical points,, SIAM Sci. Comp., 24 (2002), 865.  doi: 10.1137/S1064827500379732.  Google Scholar

[18]

E. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains,, Invent. Math., 74 (1983), 441.  doi: 10.1007/BF01394245.  Google Scholar

[19]

J. Q. Liu, Y. Q. Wang and Z. Q. Wang, Solutions for quasi-linear Schrödinger equations via the Nehari method,, Comm. Partial Differential Equations, 29 (2004), 879.  doi: 10.1081/PDE-120037335.  Google Scholar

[20]

P. Pucci and J. Serrin, "The Maximum Principle,", Progress in Nonlinear Differential Equations and Their Applications, 73 (2007).   Google Scholar

[21]

J. R. Shewchuk, Delaunay refinement algorithms for triangular mesh generation,, Computational Geometry: Theory and Applications, 22 (2002), 21.  doi: 10.1016/S0925-7721(01)00047-5.  Google Scholar

[22]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems,, J. Funct. Anal., 257 (2009), 3802.  doi: 10.1016/j.jfa.2009.09.013.  Google Scholar

[23]

N. Tacheny and C. Troestler, A mountain pass algorithm with projector,, J. Comput. Appl. Math., 236 (2012), 2025.  doi: 10.1016/j.cam.2011.11.011.  Google Scholar

[24]

M. Willem, "Minimax Theorems,", Progress in Nonlinear Differential Equations and Their Applications, 24 (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[1]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[2]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[3]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[4]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[5]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[6]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[7]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[8]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[9]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[10]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[11]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[12]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[13]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[14]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[15]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[16]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[17]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[18]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[19]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[20]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (1)

[Back to Top]