-
Previous Article
A relaxation method for one dimensional traveling waves of singular and nonlocal equations
- DCDS-B Home
- This Issue
-
Next Article
Analysis of a scalar nonlocal peridynamic model with a sign changing kernel
Dynamics of a limit cycle oscillator with extended delay feedback
1. | Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China |
2. | Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China |
References:
[1] |
A. Sharma, P. R. Sharma and M. D. Shrimali, Amplitude death in nonlinear oscillators with indirect coupling,, Physics Lett. A, 376 (2012), 1562. Google Scholar |
[2] |
X. Wu and L. Wang, Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay,, Discrete Continuous Dynam. Systems-B, 13 (2010), 503.
doi: 10.3934/dcdsb.2010.13.503. |
[3] |
M. Rosenblum and A. Pikovsky, Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms,, Phys. Rev. E, 70 (2004).
doi: 10.1103/PhysRevE.70.041904. |
[4] |
Y. Kuramoto and I. Nishikawa, Statistical macrodynamics of large dynamical systems: Case of a phase transition in oscillator communities,, J. Statist. Phys., 49 (1987), 569.
doi: 10.1007/BF01009349. |
[5] |
W. Jiang and J. Wei, Bifurcation analysis in a limit cycle oscillator with delayed feedback,, Chaos, 23 (2005), 817.
doi: 10.1016/j.chaos.2004.05.028. |
[6] |
D. V. R. Reddy, A. Sen and G. L. Johnston, Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks,, Physica D, 144 (2000), 335.
doi: 10.1016/S0167-2789(00)00086-5. |
[7] |
S. Kim, S. H. Park and C. S. Ryu, Multistability in coupled oscillator systems with time delay,, Phys. Rev. Lett., 79 (1997). Google Scholar |
[8] |
D. V. R. Reddy, A. Sen and G. L. Johnston, Time delay effects on coupled limit cycle oscillators at Hopf bifurcation,, Physica D, 129 (1999), 15.
doi: 10.1016/S0167-2789(99)00004-4. |
[9] |
Y. Li, W. Jiang and H. Wang, Double Hopf bifurcation and quasi-periodic attractors in delay-coupled limit cycle oscillators,, J. Math. Anal. Appl., 387 (2012), 1114.
doi: 10.1016/j.jmaa.2011.10.023. |
[10] |
K. Pyragas, Continuous control of chaos by self-controlling feedback,, Phys. Lett. A, 170 (1992), 421. Google Scholar |
[11] |
S. Yuan, Y. Song and J. Li, Oscillations in a plasmid turbidostat model with delayed feedback control,, Discrete Continuous Dynam. Systems-B, 15 (2011), 893.
doi: 10.3934/dcdsb.2011.15.893. |
[12] |
J. Wei and W. Jiang, Stability and bifurcation analysis in Van der Pol's oscillator with delayed feedback,, J. Sound Vibrat., 283 (2005), 801.
doi: 10.1016/j.jsv.2004.05.014. |
[13] |
J. E. S. Socolar, D. W. Sukow and D. J. Gauthier, Stabilizing unstable periodic orbits in fast dynamical systems,, Phys. Rev. E, 50 (1994). Google Scholar |
[14] |
K. Pyragas, Control of chaos via extended delay feedback,, Phys. Lett. A, 206 (1995), 323.
doi: 10.1016/0375-9601(95)00654-L. |
[15] |
S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and Chaos,", Springer, (1980).
|
[16] |
Y. Kuang, On neutral delay logistic gause-type predator-prey systems,, Dynamics and Stability of Systems, 6 (1991), 173.
|
[17] |
J. Wei and S. Ruan, Stability and global Hopf bifurcation for neutral differential equations,, Acta. Math. Sin., 45 (2002), 94.
|
[18] |
C. Wang and J. Wei, Normal forms for NFDE with parameters and application to the lossless transmission line,, Nonlinear Dynam., 52 (2008), 199.
doi: 10.1007/s11071-007-9271-9. |
[19] |
M. Weedermann, Normal forms for neutral functional differential equations,, in, (2001), 361.
|
[20] |
M. Weedermann, Hopf bifurcation calculations for scalar neutral delay differential equations,, Nonlinearity, 19 (2006), 2091.
doi: 10.1088/0951-7715/19/9/005. |
[21] |
J. Hale and S. Lunel, "Introduction to Functional Differential Equations,", Springer, (1993).
|
[22] |
T. Faria and L. Magalhaes, Normal forms for retarded functional differential equation with parameters and applications to Hopf bifurcation,, J. Differ. Equations, 122 (1995), 181.
doi: 10.1006/jdeq.1995.1144. |
[23] |
Z. Hu, P. Bi, W. Ma and S. Ruan, Bifurcations of an SIRS epidemic model with nonlinear incidence rate,, Discrete Continuous Dynam. Systems-B, 15 (2011), 93.
doi: 10.3934/dcdsb.2011.15.93. |
[24] |
J. Carr, "Applications of Centre Manifold Theory,", Springer, (1981).
|
[25] |
S. N. Chow and K. Lu, $C^k$ center unstable manifolds,, Proc. Roy. Soc. Edinburgh., 108 (1988), 303.
doi: 10.1017/S0308210500014682. |
[26] |
J. Wu, "Theory and Applications of Partial Functional Differential Equations,", Springer, (1995).
doi: 10.1007/978-1-4612-4050-1. |
[27] |
Y. Qu, J.Wei and S. Ruan, Stability and bifurcation analysis in hematopoietic stem cell dynamics with multiple delays,, Physica D, 239 (2010), 2011.
doi: 10.1016/j.physd.2010.07.013. |
[28] |
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer, (1983).
|
show all references
References:
[1] |
A. Sharma, P. R. Sharma and M. D. Shrimali, Amplitude death in nonlinear oscillators with indirect coupling,, Physics Lett. A, 376 (2012), 1562. Google Scholar |
[2] |
X. Wu and L. Wang, Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay,, Discrete Continuous Dynam. Systems-B, 13 (2010), 503.
doi: 10.3934/dcdsb.2010.13.503. |
[3] |
M. Rosenblum and A. Pikovsky, Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms,, Phys. Rev. E, 70 (2004).
doi: 10.1103/PhysRevE.70.041904. |
[4] |
Y. Kuramoto and I. Nishikawa, Statistical macrodynamics of large dynamical systems: Case of a phase transition in oscillator communities,, J. Statist. Phys., 49 (1987), 569.
doi: 10.1007/BF01009349. |
[5] |
W. Jiang and J. Wei, Bifurcation analysis in a limit cycle oscillator with delayed feedback,, Chaos, 23 (2005), 817.
doi: 10.1016/j.chaos.2004.05.028. |
[6] |
D. V. R. Reddy, A. Sen and G. L. Johnston, Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks,, Physica D, 144 (2000), 335.
doi: 10.1016/S0167-2789(00)00086-5. |
[7] |
S. Kim, S. H. Park and C. S. Ryu, Multistability in coupled oscillator systems with time delay,, Phys. Rev. Lett., 79 (1997). Google Scholar |
[8] |
D. V. R. Reddy, A. Sen and G. L. Johnston, Time delay effects on coupled limit cycle oscillators at Hopf bifurcation,, Physica D, 129 (1999), 15.
doi: 10.1016/S0167-2789(99)00004-4. |
[9] |
Y. Li, W. Jiang and H. Wang, Double Hopf bifurcation and quasi-periodic attractors in delay-coupled limit cycle oscillators,, J. Math. Anal. Appl., 387 (2012), 1114.
doi: 10.1016/j.jmaa.2011.10.023. |
[10] |
K. Pyragas, Continuous control of chaos by self-controlling feedback,, Phys. Lett. A, 170 (1992), 421. Google Scholar |
[11] |
S. Yuan, Y. Song and J. Li, Oscillations in a plasmid turbidostat model with delayed feedback control,, Discrete Continuous Dynam. Systems-B, 15 (2011), 893.
doi: 10.3934/dcdsb.2011.15.893. |
[12] |
J. Wei and W. Jiang, Stability and bifurcation analysis in Van der Pol's oscillator with delayed feedback,, J. Sound Vibrat., 283 (2005), 801.
doi: 10.1016/j.jsv.2004.05.014. |
[13] |
J. E. S. Socolar, D. W. Sukow and D. J. Gauthier, Stabilizing unstable periodic orbits in fast dynamical systems,, Phys. Rev. E, 50 (1994). Google Scholar |
[14] |
K. Pyragas, Control of chaos via extended delay feedback,, Phys. Lett. A, 206 (1995), 323.
doi: 10.1016/0375-9601(95)00654-L. |
[15] |
S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and Chaos,", Springer, (1980).
|
[16] |
Y. Kuang, On neutral delay logistic gause-type predator-prey systems,, Dynamics and Stability of Systems, 6 (1991), 173.
|
[17] |
J. Wei and S. Ruan, Stability and global Hopf bifurcation for neutral differential equations,, Acta. Math. Sin., 45 (2002), 94.
|
[18] |
C. Wang and J. Wei, Normal forms for NFDE with parameters and application to the lossless transmission line,, Nonlinear Dynam., 52 (2008), 199.
doi: 10.1007/s11071-007-9271-9. |
[19] |
M. Weedermann, Normal forms for neutral functional differential equations,, in, (2001), 361.
|
[20] |
M. Weedermann, Hopf bifurcation calculations for scalar neutral delay differential equations,, Nonlinearity, 19 (2006), 2091.
doi: 10.1088/0951-7715/19/9/005. |
[21] |
J. Hale and S. Lunel, "Introduction to Functional Differential Equations,", Springer, (1993).
|
[22] |
T. Faria and L. Magalhaes, Normal forms for retarded functional differential equation with parameters and applications to Hopf bifurcation,, J. Differ. Equations, 122 (1995), 181.
doi: 10.1006/jdeq.1995.1144. |
[23] |
Z. Hu, P. Bi, W. Ma and S. Ruan, Bifurcations of an SIRS epidemic model with nonlinear incidence rate,, Discrete Continuous Dynam. Systems-B, 15 (2011), 93.
doi: 10.3934/dcdsb.2011.15.93. |
[24] |
J. Carr, "Applications of Centre Manifold Theory,", Springer, (1981).
|
[25] |
S. N. Chow and K. Lu, $C^k$ center unstable manifolds,, Proc. Roy. Soc. Edinburgh., 108 (1988), 303.
doi: 10.1017/S0308210500014682. |
[26] |
J. Wu, "Theory and Applications of Partial Functional Differential Equations,", Springer, (1995).
doi: 10.1007/978-1-4612-4050-1. |
[27] |
Y. Qu, J.Wei and S. Ruan, Stability and bifurcation analysis in hematopoietic stem cell dynamics with multiple delays,, Physica D, 239 (2010), 2011.
doi: 10.1016/j.physd.2010.07.013. |
[28] |
J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,", Springer, (1983).
|
[1] |
Mikhail Kamenskii, Boris Mikhaylenko. Bifurcation of periodic solutions from a degenerated cycle in equations of neutral type with a small delay. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 437-452. doi: 10.3934/dcdsb.2013.18.437 |
[2] |
John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 |
[3] |
Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197 |
[4] |
Xiaoqin P. Wu, Liancheng Wang. Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 503-516. doi: 10.3934/dcdsb.2010.13.503 |
[5] |
Orit Lavi, Doron Ginsberg, Yoram Louzoun. Regulation of modular Cyclin and CDK feedback loops by an E2F transcription oscillator in the mammalian cell cycle. Mathematical Biosciences & Engineering, 2011, 8 (2) : 445-461. doi: 10.3934/mbe.2011.8.445 |
[6] |
Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026 |
[7] |
Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038 |
[8] |
Jaume Llibre, Ernesto Pérez-Chavela. Zero-Hopf bifurcation for a class of Lorenz-type systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1731-1736. doi: 10.3934/dcdsb.2014.19.1731 |
[9] |
Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846-853. doi: 10.3934/proc.2005.2005.846 |
[10] |
Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129 |
[11] |
Domingo Gomez-Perez, Ana-Isabel Gomez, Andrew Tirkel. Arrays composed from the extended rational cycle. Advances in Mathematics of Communications, 2017, 11 (2) : 313-327. doi: 10.3934/amc.2017024 |
[12] |
Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457 |
[13] |
Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031 |
[14] |
Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997 |
[15] |
Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045 |
[16] |
Jean-François Couchouron, Mikhail Kamenskii, Paolo Nistri. An infinite dimensional bifurcation problem with application to a class of functional differential equations of neutral type. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1845-1859. doi: 10.3934/cpaa.2013.12.1845 |
[17] |
Fuke Wu, Shigeng Hu. The LaSalle-type theorem for neutral stochastic functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1065-1094. doi: 10.3934/dcds.2012.32.1065 |
[18] |
Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete & Continuous Dynamical Systems - S, 2020, 13 (1) : 47-66. doi: 10.3934/dcdss.2020003 |
[19] |
Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152 |
[20] |
Zhiqin Qiao, Deming Zhu, Qiuying Lu. Bifurcation of a heterodimensional cycle with weak inclination flip. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 1009-1025. doi: 10.3934/dcdsb.2012.17.1009 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]