July  2013, 18(5): 1493-1505. doi: 10.3934/dcdsb.2013.18.1493

$L^\infty$ estimation of the LDG method for 1-d singularly perturbed convection-diffusion problems

1. 

Department of Mathematics, The University of Southern Mississippi, Hattiesburg, MS 39406, United States

2. 

Department of Engineering, Mathematics, and Physics, Texas A&M International University, Laredo, TX 78041, United States

Received  April 2012 Revised  October 2012 Published  March 2013

Pointwise error estimates of the local discontinuous Galerkin (LDG) method for a one-dimensional singularly perturbed problem are studied. Several uniform $L^\infty$ error bounds for the LDG approximation to the solution and its derivative are established on a Shishkin-type mesh. Numerical experiments are presented.
Citation: Huiqing Zhu, Runchang Lin. $L^\infty$ estimation of the LDG method for 1-d singularly perturbed convection-diffusion problems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1493-1505. doi: 10.3934/dcdsb.2013.18.1493
References:
[1]

D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749-1779. doi: 10.1137/S0036142901384162.  Google Scholar

[2]

P. Castillo, B. Cockburn, D. Sch$\ddoto$tzau and C. Schwab, Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems, Math. Comp., 71 (2002), 455-478. doi: 10.1090/S0025-5718-01-01317-5.  Google Scholar

[3]

F. Celiker and B. Cockburn, Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension, Math. Comp., 76 (2007), 67-96. doi: 10.1090/S0025-5718-06-01895-3.  Google Scholar

[4]

F. Celiker, Z. Zhang and H. Zhu, Nodal superconvergence of SDFEM for singularly perturbed problems, J. Sci. Comput., 50 (2012), 405-433. doi: 10.1007/s10915-011-9489-z.  Google Scholar

[5]

L. Chen and J. Xu, An optimal streamline diffusion finite element method for a singularly perturbed problem, Recent Advances in Adaptive Computation, Contemp. Math., 383 (2005), 191-201. doi: 10.1090/conm/383/07164.  Google Scholar

[6]

B. Cockburn, G. Kanschat, I. Perugia and D. Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal., 39 (2001), 264-285. doi: 10.1137/S0036142900371544.  Google Scholar

[7]

B. Cockburn and C. W. Shu, The local discontinuous Galerkin finite element method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), 2440-2463. doi: 10.1137/S0036142997316712.  Google Scholar

[8]

P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan and G. I. Shishkin, "Robust Computational Techniques For Boundary Layers," Applied Mathematics 16, Chapman & Hall/CRC, Boca Raton, FL, 2000.  Google Scholar

[9]

S. Franz and H-G. Roos, The capriciousness of numerical methods for singular perturbations SIAM Rev., 53 (2011), 157-173. doi: 10.1137/090757344.  Google Scholar

[10]

P. Houston, C. Schwab and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 39 (2002), 2133-2163. doi: 10.1137/S0036142900374111.  Google Scholar

[11]

C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comp., 46 (1986), 1-26. doi: 10.2307/2008211.  Google Scholar

[12]

S. Larsson and V. Thomée, "Partial Differential Equations With Numerical Methods," Texts in Applied Mathematics, 45, Springer-Verlag, Berlin, 2003.  Google Scholar

[13]

P. Lesiant and P. A. Raviart, On a finite element method for solving the neutron transport equation, in "Mathematical Aspects of Finite Elements in Partial Differential Equations" (Edited by Carl de Boor), Academic Press, New York-London, (1974).  Google Scholar

[14]

R. Lin, Discontinuous discretization for least-squares formulation of singularly perturbed reaction-diffusion problems in one and two dimensions, SIAM J. Numer. Anal., 47 (2008), 89-108. doi: 10.1137/070700267.  Google Scholar

[15]

K. W. Morton, "Numerical Solution of Convection-Diffusion Problems," Applied Mathematics and Mathematical Computation 12, Chapman & Hall, London, 1996.  Google Scholar

[16]

H. G. Roos, M. Stynes and L. Tobiska, "Robust Numerical Methods for Singularly Perturbed Differential Equations," 2nd edition, Springer Series in Computational Mathematics 24, Springer-Verlag, Berlin, 2008.  Google Scholar

[17]

H. G. Roos and H. Zarin, A supercloseness result for the discontinuous Galerkin stabilization of convection-diffusion problems on Shishkin meshes, Num. Meth. Part. Diff. Eq., 23 (2007), 1560-1576. doi: 10.1002/num.20241.  Google Scholar

[18]

D. Schötzau and C. Schwab, Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method, SIAM J. Numer. Anal., 38 (2000), 837-875. doi: 10.1137/S0036142999352394.  Google Scholar

[19]

Z. Xie and Z. Zhang, Superconvergence of DG method for one-dimensional singularly perturbed problems, J. Comput. Math., 25 (2007), 185-200.  Google Scholar

[20]

Z. Xie, Z.-Z. Zhang and Z. Zhang, A numerical study of uniform superconvergence of LDG method for solving singularly perturbed problems, J. Comp. Math., 27 (2009), 280-298.  Google Scholar

[21]

H. Zarin and H.-G. Roos, Interior penalty discontinuous approximations of convection-diffusion problems with parabolic layers, Numer. Math., 100 (2005), 735-759. doi: 10.1007/s00211-005-0598-1.  Google Scholar

[22]

Z. Zhang, Finite element superconvergence approximation for one-dimensional singularly perturbed problems, Numer. Methods Partial Differential Equations., 18 (2002), 374-395. doi: 10.1002/num.10001.  Google Scholar

[23]

H. Zhu, H. Tian and Z. Zhang, Convergence analysis of the LDG method for singularly perturbed two-point boundary value problems, Comm. Math. Sci., 9 (2011), 1013-1032.  Google Scholar

[24]

H. Zhu and Z. Zhang, Pointwise Error Estimates for the LDG Method Applied to 1-d Singularly Perturbed Reaction-Diffusion Problems,, Comput. Methods Appl. Math., ().  doi: 10.1515/cmam--2012--0004.  Google Scholar

show all references

References:
[1]

D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749-1779. doi: 10.1137/S0036142901384162.  Google Scholar

[2]

P. Castillo, B. Cockburn, D. Sch$\ddoto$tzau and C. Schwab, Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems, Math. Comp., 71 (2002), 455-478. doi: 10.1090/S0025-5718-01-01317-5.  Google Scholar

[3]

F. Celiker and B. Cockburn, Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension, Math. Comp., 76 (2007), 67-96. doi: 10.1090/S0025-5718-06-01895-3.  Google Scholar

[4]

F. Celiker, Z. Zhang and H. Zhu, Nodal superconvergence of SDFEM for singularly perturbed problems, J. Sci. Comput., 50 (2012), 405-433. doi: 10.1007/s10915-011-9489-z.  Google Scholar

[5]

L. Chen and J. Xu, An optimal streamline diffusion finite element method for a singularly perturbed problem, Recent Advances in Adaptive Computation, Contemp. Math., 383 (2005), 191-201. doi: 10.1090/conm/383/07164.  Google Scholar

[6]

B. Cockburn, G. Kanschat, I. Perugia and D. Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal., 39 (2001), 264-285. doi: 10.1137/S0036142900371544.  Google Scholar

[7]

B. Cockburn and C. W. Shu, The local discontinuous Galerkin finite element method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), 2440-2463. doi: 10.1137/S0036142997316712.  Google Scholar

[8]

P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan and G. I. Shishkin, "Robust Computational Techniques For Boundary Layers," Applied Mathematics 16, Chapman & Hall/CRC, Boca Raton, FL, 2000.  Google Scholar

[9]

S. Franz and H-G. Roos, The capriciousness of numerical methods for singular perturbations SIAM Rev., 53 (2011), 157-173. doi: 10.1137/090757344.  Google Scholar

[10]

P. Houston, C. Schwab and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 39 (2002), 2133-2163. doi: 10.1137/S0036142900374111.  Google Scholar

[11]

C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comp., 46 (1986), 1-26. doi: 10.2307/2008211.  Google Scholar

[12]

S. Larsson and V. Thomée, "Partial Differential Equations With Numerical Methods," Texts in Applied Mathematics, 45, Springer-Verlag, Berlin, 2003.  Google Scholar

[13]

P. Lesiant and P. A. Raviart, On a finite element method for solving the neutron transport equation, in "Mathematical Aspects of Finite Elements in Partial Differential Equations" (Edited by Carl de Boor), Academic Press, New York-London, (1974).  Google Scholar

[14]

R. Lin, Discontinuous discretization for least-squares formulation of singularly perturbed reaction-diffusion problems in one and two dimensions, SIAM J. Numer. Anal., 47 (2008), 89-108. doi: 10.1137/070700267.  Google Scholar

[15]

K. W. Morton, "Numerical Solution of Convection-Diffusion Problems," Applied Mathematics and Mathematical Computation 12, Chapman & Hall, London, 1996.  Google Scholar

[16]

H. G. Roos, M. Stynes and L. Tobiska, "Robust Numerical Methods for Singularly Perturbed Differential Equations," 2nd edition, Springer Series in Computational Mathematics 24, Springer-Verlag, Berlin, 2008.  Google Scholar

[17]

H. G. Roos and H. Zarin, A supercloseness result for the discontinuous Galerkin stabilization of convection-diffusion problems on Shishkin meshes, Num. Meth. Part. Diff. Eq., 23 (2007), 1560-1576. doi: 10.1002/num.20241.  Google Scholar

[18]

D. Schötzau and C. Schwab, Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method, SIAM J. Numer. Anal., 38 (2000), 837-875. doi: 10.1137/S0036142999352394.  Google Scholar

[19]

Z. Xie and Z. Zhang, Superconvergence of DG method for one-dimensional singularly perturbed problems, J. Comput. Math., 25 (2007), 185-200.  Google Scholar

[20]

Z. Xie, Z.-Z. Zhang and Z. Zhang, A numerical study of uniform superconvergence of LDG method for solving singularly perturbed problems, J. Comp. Math., 27 (2009), 280-298.  Google Scholar

[21]

H. Zarin and H.-G. Roos, Interior penalty discontinuous approximations of convection-diffusion problems with parabolic layers, Numer. Math., 100 (2005), 735-759. doi: 10.1007/s00211-005-0598-1.  Google Scholar

[22]

Z. Zhang, Finite element superconvergence approximation for one-dimensional singularly perturbed problems, Numer. Methods Partial Differential Equations., 18 (2002), 374-395. doi: 10.1002/num.10001.  Google Scholar

[23]

H. Zhu, H. Tian and Z. Zhang, Convergence analysis of the LDG method for singularly perturbed two-point boundary value problems, Comm. Math. Sci., 9 (2011), 1013-1032.  Google Scholar

[24]

H. Zhu and Z. Zhang, Pointwise Error Estimates for the LDG Method Applied to 1-d Singularly Perturbed Reaction-Diffusion Problems,, Comput. Methods Appl. Math., ().  doi: 10.1515/cmam--2012--0004.  Google Scholar

[1]

Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817

[2]

Mahboub Baccouch. Superconvergence of the semi-discrete local discontinuous Galerkin method for nonlinear KdV-type problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 19-54. doi: 10.3934/dcdsb.2018104

[3]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4907-4926. doi: 10.3934/dcdsb.2020319

[4]

Rongjie Lai, Jiang Liang, Hong-Kai Zhao. A local mesh method for solving PDEs on point clouds. Inverse Problems & Imaging, 2013, 7 (3) : 737-755. doi: 10.3934/ipi.2013.7.737

[5]

Yinhua Xia, Yan Xu, Chi-Wang Shu. Efficient time discretization for local discontinuous Galerkin methods. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 677-693. doi: 10.3934/dcdsb.2007.8.677

[6]

Vyacheslav K. Isaev, Vyacheslav V. Zolotukhin. Introduction to the theory of splines with an optimal mesh. Linear Chebyshev splines and applications. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 471-489. doi: 10.3934/naco.2013.3.471

[7]

Yulong Xing, Ching-Shan Chou, Chi-Wang Shu. Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Problems & Imaging, 2013, 7 (3) : 967-986. doi: 10.3934/ipi.2013.7.967

[8]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[9]

Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic & Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139

[10]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[11]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, 2021, 29 (3) : 2375-2389. doi: 10.3934/era.2020120

[12]

Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241

[13]

ShinJa Jeong, Mi-Young Kim. Computational aspects of the multiscale discontinuous Galerkin method for convection-diffusion-reaction problems. Electronic Research Archive, 2021, 29 (2) : 1991-2006. doi: 10.3934/era.2020101

[14]

Kim S. Bey, Peter Z. Daffer, Hideaki Kaneko, Puntip Toghaw. Error analysis of the p-version discontinuous Galerkin method for heat transfer in built-up structures. Communications on Pure & Applied Analysis, 2007, 6 (3) : 719-740. doi: 10.3934/cpaa.2007.6.719

[15]

Qingjie Hu, Zhihao Ge, Yinnian He. Discontinuous Galerkin method for the Helmholtz transmission problem in two-level homogeneous media. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 2923-2948. doi: 10.3934/dcdsb.2020046

[16]

Xia Ji, Wei Cai. Accurate simulations of 2-D phase shift masks with a generalized discontinuous Galerkin (GDG) method. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 401-415. doi: 10.3934/dcdsb.2011.15.401

[17]

Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic & Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033

[18]

Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489

[19]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[20]

Houssem Haddar, Alexander Konschin. Factorization method for imaging a local perturbation in inhomogeneous periodic layers from far field measurements. Inverse Problems & Imaging, 2020, 14 (1) : 133-152. doi: 10.3934/ipi.2019067

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]