-
Previous Article
Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises
- DCDS-B Home
- This Issue
-
Next Article
A relaxation method for one dimensional traveling waves of singular and nonlocal equations
$L^\infty$ estimation of the LDG method for 1-d singularly perturbed convection-diffusion problems
1. | Department of Mathematics, The University of Southern Mississippi, Hattiesburg, MS 39406, United States |
2. | Department of Engineering, Mathematics, and Physics, Texas A&M International University, Laredo, TX 78041, United States |
References:
[1] |
D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749-1779.
doi: 10.1137/S0036142901384162. |
[2] |
P. Castillo, B. Cockburn, D. Sch$\ddot{O}$tzau and C. Schwab, Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems, Math. Comp., 71 (2002), 455-478.
doi: 10.1090/S0025-5718-01-01317-5. |
[3] |
F. Celiker and B. Cockburn, Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension, Math. Comp., 76 (2007), 67-96.
doi: 10.1090/S0025-5718-06-01895-3. |
[4] |
F. Celiker, Z. Zhang and H. Zhu, Nodal superconvergence of SDFEM for singularly perturbed problems, J. Sci. Comput., 50 (2012), 405-433.
doi: 10.1007/s10915-011-9489-z. |
[5] |
L. Chen and J. Xu, An optimal streamline diffusion finite element method for a singularly perturbed problem, Recent Advances in Adaptive Computation, Contemp. Math., 383 (2005), 191-201.
doi: 10.1090/conm/383/07164. |
[6] |
B. Cockburn, G. Kanschat, I. Perugia and D. Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal., 39 (2001), 264-285.
doi: 10.1137/S0036142900371544. |
[7] |
B. Cockburn and C. W. Shu, The local discontinuous Galerkin finite element method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), 2440-2463.
doi: 10.1137/S0036142997316712. |
[8] |
P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan and G. I. Shishkin, "Robust Computational Techniques For Boundary Layers," Applied Mathematics 16, Chapman & Hall/CRC, Boca Raton, FL, 2000. |
[9] |
S. Franz and H-G. Roos, The capriciousness of numerical methods for singular perturbations SIAM Rev., 53 (2011), 157-173.
doi: 10.1137/090757344. |
[10] |
P. Houston, C. Schwab and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 39 (2002), 2133-2163.
doi: 10.1137/S0036142900374111. |
[11] |
C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comp., 46 (1986), 1-26.
doi: 10.2307/2008211. |
[12] |
S. Larsson and V. Thomée, "Partial Differential Equations With Numerical Methods," Texts in Applied Mathematics, 45, Springer-Verlag, Berlin, 2003. |
[13] |
P. Lesiant and P. A. Raviart, On a finite element method for solving the neutron transport equation, in "Mathematical Aspects of Finite Elements in Partial Differential Equations" (Edited by Carl de Boor), Academic Press, New York-London, (1974). |
[14] |
R. Lin, Discontinuous discretization for least-squares formulation of singularly perturbed reaction-diffusion problems in one and two dimensions, SIAM J. Numer. Anal., 47 (2008), 89-108.
doi: 10.1137/070700267. |
[15] |
K. W. Morton, "Numerical Solution of Convection-Diffusion Problems," Applied Mathematics and Mathematical Computation 12, Chapman & Hall, London, 1996. |
[16] |
H. G. Roos, M. Stynes and L. Tobiska, "Robust Numerical Methods for Singularly Perturbed Differential Equations," 2nd edition, Springer Series in Computational Mathematics 24, Springer-Verlag, Berlin, 2008. |
[17] |
H. G. Roos and H. Zarin, A supercloseness result for the discontinuous Galerkin stabilization of convection-diffusion problems on Shishkin meshes, Num. Meth. Part. Diff. Eq., 23 (2007), 1560-1576.
doi: 10.1002/num.20241. |
[18] |
D. Schötzau and C. Schwab, Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method, SIAM J. Numer. Anal., 38 (2000), 837-875.
doi: 10.1137/S0036142999352394. |
[19] |
Z. Xie and Z. Zhang, Superconvergence of DG method for one-dimensional singularly perturbed problems, J. Comput. Math., 25 (2007), 185-200. |
[20] |
Z. Xie, Z.-Z. Zhang and Z. Zhang, A numerical study of uniform superconvergence of LDG method for solving singularly perturbed problems, J. Comp. Math., 27 (2009), 280-298. |
[21] |
H. Zarin and H.-G. Roos, Interior penalty discontinuous approximations of convection-diffusion problems with parabolic layers, Numer. Math., 100 (2005), 735-759.
doi: 10.1007/s00211-005-0598-1. |
[22] |
Z. Zhang, Finite element superconvergence approximation for one-dimensional singularly perturbed problems, Numer. Methods Partial Differential Equations., 18 (2002), 374-395.
doi: 10.1002/num.10001. |
[23] |
H. Zhu, H. Tian and Z. Zhang, Convergence analysis of the LDG method for singularly perturbed two-point boundary value problems, Comm. Math. Sci., 9 (2011), 1013-1032. |
[24] |
H. Zhu and Z. Zhang, Pointwise Error Estimates for the LDG Method Applied to 1-d Singularly Perturbed Reaction-Diffusion Problems, Comput. Methods Appl. Math., Published Online: 10/19/2012.
doi: 10.1515/cmam--2012--0004. |
show all references
References:
[1] |
D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749-1779.
doi: 10.1137/S0036142901384162. |
[2] |
P. Castillo, B. Cockburn, D. Sch$\ddot{O}$tzau and C. Schwab, Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems, Math. Comp., 71 (2002), 455-478.
doi: 10.1090/S0025-5718-01-01317-5. |
[3] |
F. Celiker and B. Cockburn, Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension, Math. Comp., 76 (2007), 67-96.
doi: 10.1090/S0025-5718-06-01895-3. |
[4] |
F. Celiker, Z. Zhang and H. Zhu, Nodal superconvergence of SDFEM for singularly perturbed problems, J. Sci. Comput., 50 (2012), 405-433.
doi: 10.1007/s10915-011-9489-z. |
[5] |
L. Chen and J. Xu, An optimal streamline diffusion finite element method for a singularly perturbed problem, Recent Advances in Adaptive Computation, Contemp. Math., 383 (2005), 191-201.
doi: 10.1090/conm/383/07164. |
[6] |
B. Cockburn, G. Kanschat, I. Perugia and D. Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal., 39 (2001), 264-285.
doi: 10.1137/S0036142900371544. |
[7] |
B. Cockburn and C. W. Shu, The local discontinuous Galerkin finite element method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), 2440-2463.
doi: 10.1137/S0036142997316712. |
[8] |
P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan and G. I. Shishkin, "Robust Computational Techniques For Boundary Layers," Applied Mathematics 16, Chapman & Hall/CRC, Boca Raton, FL, 2000. |
[9] |
S. Franz and H-G. Roos, The capriciousness of numerical methods for singular perturbations SIAM Rev., 53 (2011), 157-173.
doi: 10.1137/090757344. |
[10] |
P. Houston, C. Schwab and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 39 (2002), 2133-2163.
doi: 10.1137/S0036142900374111. |
[11] |
C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comp., 46 (1986), 1-26.
doi: 10.2307/2008211. |
[12] |
S. Larsson and V. Thomée, "Partial Differential Equations With Numerical Methods," Texts in Applied Mathematics, 45, Springer-Verlag, Berlin, 2003. |
[13] |
P. Lesiant and P. A. Raviart, On a finite element method for solving the neutron transport equation, in "Mathematical Aspects of Finite Elements in Partial Differential Equations" (Edited by Carl de Boor), Academic Press, New York-London, (1974). |
[14] |
R. Lin, Discontinuous discretization for least-squares formulation of singularly perturbed reaction-diffusion problems in one and two dimensions, SIAM J. Numer. Anal., 47 (2008), 89-108.
doi: 10.1137/070700267. |
[15] |
K. W. Morton, "Numerical Solution of Convection-Diffusion Problems," Applied Mathematics and Mathematical Computation 12, Chapman & Hall, London, 1996. |
[16] |
H. G. Roos, M. Stynes and L. Tobiska, "Robust Numerical Methods for Singularly Perturbed Differential Equations," 2nd edition, Springer Series in Computational Mathematics 24, Springer-Verlag, Berlin, 2008. |
[17] |
H. G. Roos and H. Zarin, A supercloseness result for the discontinuous Galerkin stabilization of convection-diffusion problems on Shishkin meshes, Num. Meth. Part. Diff. Eq., 23 (2007), 1560-1576.
doi: 10.1002/num.20241. |
[18] |
D. Schötzau and C. Schwab, Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method, SIAM J. Numer. Anal., 38 (2000), 837-875.
doi: 10.1137/S0036142999352394. |
[19] |
Z. Xie and Z. Zhang, Superconvergence of DG method for one-dimensional singularly perturbed problems, J. Comput. Math., 25 (2007), 185-200. |
[20] |
Z. Xie, Z.-Z. Zhang and Z. Zhang, A numerical study of uniform superconvergence of LDG method for solving singularly perturbed problems, J. Comp. Math., 27 (2009), 280-298. |
[21] |
H. Zarin and H.-G. Roos, Interior penalty discontinuous approximations of convection-diffusion problems with parabolic layers, Numer. Math., 100 (2005), 735-759.
doi: 10.1007/s00211-005-0598-1. |
[22] |
Z. Zhang, Finite element superconvergence approximation for one-dimensional singularly perturbed problems, Numer. Methods Partial Differential Equations., 18 (2002), 374-395.
doi: 10.1002/num.10001. |
[23] |
H. Zhu, H. Tian and Z. Zhang, Convergence analysis of the LDG method for singularly perturbed two-point boundary value problems, Comm. Math. Sci., 9 (2011), 1013-1032. |
[24] |
H. Zhu and Z. Zhang, Pointwise Error Estimates for the LDG Method Applied to 1-d Singularly Perturbed Reaction-Diffusion Problems, Comput. Methods Appl. Math., Published Online: 10/19/2012.
doi: 10.1515/cmam--2012--0004. |
[1] |
Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817 |
[2] |
Mahboub Baccouch. Superconvergence of the semi-discrete local discontinuous Galerkin method for nonlinear KdV-type problems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 19-54. doi: 10.3934/dcdsb.2018104 |
[3] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4907-4926. doi: 10.3934/dcdsb.2020319 |
[4] |
Rongjie Lai, Jiang Liang, Hong-Kai Zhao. A local mesh method for solving PDEs on point clouds. Inverse Problems and Imaging, 2013, 7 (3) : 737-755. doi: 10.3934/ipi.2013.7.737 |
[5] |
Yinhua Xia, Yan Xu, Chi-Wang Shu. Efficient time discretization for local discontinuous Galerkin methods. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 677-693. doi: 10.3934/dcdsb.2007.8.677 |
[6] |
Vyacheslav K. Isaev, Vyacheslav V. Zolotukhin. Introduction to the theory of splines with an optimal mesh. Linear Chebyshev splines and applications. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 471-489. doi: 10.3934/naco.2013.3.471 |
[7] |
Yulong Xing, Ching-Shan Chou, Chi-Wang Shu. Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Problems and Imaging, 2013, 7 (3) : 967-986. doi: 10.3934/ipi.2013.7.967 |
[8] |
Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216 |
[9] |
Armando Majorana. A numerical model of the Boltzmann equation related to the discontinuous Galerkin method. Kinetic and Related Models, 2011, 4 (1) : 139-151. doi: 10.3934/krm.2011.4.139 |
[10] |
Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078 |
[11] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, 2021, 29 (3) : 2375-2389. doi: 10.3934/era.2020120 |
[12] |
Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241 |
[13] |
ShinJa Jeong, Mi-Young Kim. Computational aspects of the multiscale discontinuous Galerkin method for convection-diffusion-reaction problems. Electronic Research Archive, 2021, 29 (2) : 1991-2006. doi: 10.3934/era.2020101 |
[14] |
Kim S. Bey, Peter Z. Daffer, Hideaki Kaneko, Puntip Toghaw. Error analysis of the p-version discontinuous Galerkin method for heat transfer in built-up structures. Communications on Pure and Applied Analysis, 2007, 6 (3) : 719-740. doi: 10.3934/cpaa.2007.6.719 |
[15] |
Qingjie Hu, Zhihao Ge, Yinnian He. Discontinuous Galerkin method for the Helmholtz transmission problem in two-level homogeneous media. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2923-2948. doi: 10.3934/dcdsb.2020046 |
[16] |
Xia Ji, Wei Cai. Accurate simulations of 2-D phase shift masks with a generalized discontinuous Galerkin (GDG) method. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 401-415. doi: 10.3934/dcdsb.2011.15.401 |
[17] |
Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic and Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033 |
[18] |
Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489 |
[19] |
Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185 |
[20] |
Houssem Haddar, Alexander Konschin. Factorization method for imaging a local perturbation in inhomogeneous periodic layers from far field measurements. Inverse Problems and Imaging, 2020, 14 (1) : 133-152. doi: 10.3934/ipi.2019067 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]