Advanced Search
Article Contents
Article Contents

Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises

Abstract Related Papers Cited by
  • The existence of a stationary distribution and a stochastic Hopf bifurcation phenomenon for a noisy predator-prey system with Beddington-DeAngelis functional response are studied both theoretically and numerically. Considering the qualitative change of the shape of the stationary distribution, the stochastic Hopf bifurcation appears as a change from a peak-like distribution to a crater-like distribution. Results are obtained through the original niosy system rather than approximations based on stochastic averaging or scaling methods.
    Mathematics Subject Classification: Primary: 60H10, 37H20; Secondary: 60E05, 37N25.


    \begin{equation} \\ \end{equation}
  • [1]

    L. Arnold, "Stochastic Differential Equations: Theory and Applications," Wiley, New York, 1972.


    L. Arnold, "Random Dynamical Systems," Springer, New York, 1998.


    J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol., 44(1975), 331-340.


    R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the beddington-deangelis functional response, J. Math. Anal. Appl., 257 (2001), 206-222.doi: 10.1006/jmaa.2000.7343.


    C. Chiarella, X. He, D. Wang and M. Zheng, The stochastic bifurcation behaviour of speculative financial markets, Physica A., 387 (2008), 3837-3846.doi: 10.1016/j.physa.2008.01.078.


    D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interaction, Ecology, 56 (1975), 881-892.


    A. Friedman, "Stochastic Differential Equations and Their Applications," Academic Press, New York, 1976.


    T. C. Gard, Persistence in stochastic food web models, Bull. Math. Biol., 46 (1984), 357-370.doi: 10.1016/S0092-8240(84)80044-0.


    T. C. Gard, Stability for multispecies population models in random environments, Nonlinear Anal., 10 (1986), 1411-1419.doi: 10.1016/0362-546X(86)90111-2.


    T. C. Gard, "Introduction to Stochastic Differential Equation," Madison Avenue 270, New York, 1988.


    R. Z. Hasminskii, "Stochastic Stability of Differential Equations, in: Mechanics and Analysis," Sijthoff and Noordhoff, Netherlands, 1980.


    D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546.doi: 10.1137/S0036144500378302.


    D. Huang, H. Wang, J. Feng and Z. Zhu, Hopf bifurcation of the stochastic model on hab nonlinear stochastic dynamics, Chaos, Solitons and Fractals, 27 (2006), 1072-1079.doi: 10.1016/j.chaos.2005.04.086.


    Z. Huang, Q. Yang and J. Cao, Stochastic stability and bifurcation for the chronic state in marchuk's model with noise, Appl. Math. Model., 35 (2011), 5842-5855.doi: 10.1016/j.apm.2011.05.027.


    T. W. Hwang, Global analysis of the predator-prey system with beddington-deangelis functional response, J. Math. Anal. Appl., 281 (2003), 395-401.


    T. W. Hwang, Uniqueness of limit cycles of the predator-prey system with beddington-deangelis functional response, J. Math. Anal. Appl., 290 (2004), 113-122.doi: 10.1016/j.jmaa.2003.09.073.


    N. Ikeda and S. Wantanabe, "Stochastic Differential Equations and Diffusion Processes," Amsterdam, North-Holland, 1981.


    C. Ji and D. Jiang, Dynamics of a stochastic density dependent predator-prey system with beddington-deangelis functional response, J. Math. Anal. Appl., 381 (2011), 441-453.doi: 10.1016/j.jmaa.2011.02.037.


    C. Ji, D. Jiang and N. Shi, A note on a predator-prey model with modified leslie-gower and holling-type ii schemes with stochastic perturbation, J. Math. Anal. Appl., 377 (2011), 435-440.doi: 10.1016/j.jmaa.2010.11.008.


    W. Li, W. Xu, J. Zhao and Y. Jin, Stochastic stability and bifurcation in a macroeconomic model, Chaos, Solitons and Fractals, 31 (2007), 702-711.doi: 10.1016/j.chaos.2005.10.024.


    X. Mao, "Stochastic Differential Equations and Applications," Horwood Publishing, Chichester, 2007.


    X. Mao, Stationary distribution of stochastic population systems, Syst. Control Letters, 60 (2011), 398-405.doi: 10.1016/j.sysconle.2011.02.013.


    R. M. May, "Stability and Complexity in Model Ecosystems," Princeton Univ., 1973.


    K. R. Schenk-Hoppé, Stochastic hopf bifurcation: an example, Inc. J. Non-Ltnmr Mechanws, 31 (1996), 685-692.doi: 10.1016/0020-7462(96)00030-3.


    G. Strang, "Linear Algebra and Its Applications," $2^{nd}$ edition, Harcourt Brace, Watkins, 1980.


    E. C. ZeemanOn the classification of dynamical systems, Bull. London Math. Soc., 20 (1988a), 545-557. doi: 10.1112/blms/20.6.545.


    E. C. ZeemanStability of dynamical system, Nonlinearity, 1 (1988b), 115-155.


    C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM J. Control Optim., 46 (2007), 1155-1179.doi: 10.1137/060649343.

  • 加载中

Article Metrics

HTML views() PDF downloads(285) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint