• Previous Article
    Exponential stability for a class of linear hyperbolic equations with hereditary memory
  • DCDS-B Home
  • This Issue
  • Next Article
    A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations
August  2013, 18(6): 1533-1554. doi: 10.3934/dcdsb.2013.18.1533

Invariance and monotonicity for stochastic delay differential equations

1. 

Department of Mechanics and Mathematics, Kharkov National University, Kharkov, 61022, Ukraine

2. 

Institut für Mathematik, Technische Universität Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany

Received  January 2012 Revised  March 2012 Published  March 2013

We study invariance and monotonicity properties of Kunita-type sto-chastic differential equations in $\mathbb{R}^d$ with delay. Our first result provides sufficient conditions for the invariance of closed subsets of $\mathbb{R}^d$. Then we present a comparison principle and show that under appropriate conditions the stochastic delay system considered generates a monotone (order-preserving) random dynamical system. Several applications are considered.
Citation: Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1533-1554. doi: 10.3934/dcdsb.2013.18.1533
References:
[1]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).   Google Scholar

[2]

L. Arnold and I. Chueshov, Order-preserving random dynamical systems: Equilibria, attractors, applications,, Dynam. Stability Systems, 13 (1998), 265.   Google Scholar

[3]

L. Arnold and I. Chueshov, Cooperative random and stochastic differential equations,, Discrete Continuous Dynam. Systems - A, 7 (2001), 1.   Google Scholar

[4]

B. Bergé, I. Chueshov and P. Vuillermot, On the behavior of solutions to certain parabolic SPDE's driven by Wiener processes,, Stochastic Process. Appl., 92 (2001), 237.  doi: 10.1016/S0304-4149(00)00082-X.  Google Scholar

[5]

I. Chueshov, Order-preserving random dynamical systems generated by a class of coupled stochastic semilinear parabolic equations,, in, (2000), 711.   Google Scholar

[6]

I. Chueshov, "Monotone Random Systems: Theory and Applications,", Lecture Notes in Mathematics, 1779 (2002).  doi: 10.1007/b83277.  Google Scholar

[7]

I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems,, Dynamical Systems: An International Journal, 19 (2004), 127.  doi: 10.1080/1468936042000207792.  Google Scholar

[8]

I. Chueshov and B. Schmalfuss, Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions,, Discrete Continuous Dynam. Systems - A, 18 (2007), 315.  doi: 10.3934/dcds.2007.18.315.  Google Scholar

[9]

I. Chueshov and P. Vuillermot, Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Stratonovitch's case,, Probab. Theory Rel. Fields, 112 (1998), 149.  doi: 10.1007/s004400050186.  Google Scholar

[10]

I. Chueshov and P. Vuillermot, Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Itô's case,, Stoch. Anal. Appl., 18 (2000), 581.  doi: 10.1080/07362990008809687.  Google Scholar

[11]

I. Chueshov and P. Vuillermot, Non-random invariant sets for some systems of parabolic stochastic partial differential equations,, Stoch. Anal. Appl., 22 (2004), 1421.  doi: 10.1081/SAP-200029487.  Google Scholar

[12]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Theory Relat. Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[13]

A. Es-Sarhir, M. Scheutzow and O. van Gaans, Invariant measures for stochastic functional differential equations with superlinear drift term,, Diff. Integral Equations, 23 (2010), 189.   Google Scholar

[14]

M. Hairer, J. Mattingly and M. Scheutzow, Asymptotic coupling and a general form of Harris' theorem with applications to stochastic delay equations,, Probab. Theory Relat. Fields, 149 (2011), 223.  doi: 10.1007/s00440-009-0250-6.  Google Scholar

[15]

P. Imkeller and M. Scheutzow, On the spatial asymptotic behaviour of stochastic flows in Euclidean space,, Ann. Probab., 27 (1999), 109.  doi: 10.1214/aop/1022677255.  Google Scholar

[16]

K. Itô and M. Nisio, On stationary solutions of a stochastic differential equation,, J. Math. Kyoto Univ., 4 (1964), 1.   Google Scholar

[17]

M. Krasnosel'skii, "Positive Solutions of Operator Equations,", Noordhoff Ltd. Groningen, (1964).   Google Scholar

[18]

M. Krasnosel'skii, Je. A. Lifshits and A. Sobolev, "Positive Linear Systems. The Method of Positive Operators,", Sigma Series in Applied Mathematics, 5 (1989).   Google Scholar

[19]

H. Kunita, "Stochastic Flows and Stochastic Differential Equations,", Cambridge Studies in Advanced Mathematics, 24 (1990).   Google Scholar

[20]

R. Martin and H. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. AMS, 321 (1990), 1.  doi: 10.2307/2001590.  Google Scholar

[21]

R. Martin, Jr. and H. Smith, Reaction-diffusion systems with time delays: Monotonicity, invariance, comparison and convergence,, J. Reine Angew. Math., 413 (1991), 1.   Google Scholar

[22]

S. Mohammed, Nonlinear flows of stochastic linear delay equations,, Stochastics, 17 (1986), 207.  doi: 10.1080/17442508608833390.  Google Scholar

[23]

S. Mohammed, The Lyapunov spectrum and stable manifolds for stochastic linear delay equations,, Stochastics and Stochastic Reports, 29 (1990), 89.   Google Scholar

[24]

S. Mohammed and M. Scheutzow, Spatial estimates for stochastic flows in Euclidean space,, Ann. Probab., 26 (1998), 56.  doi: 10.1214/aop/1022855411.  Google Scholar

[25]

S. Mohammed and M. Scheutzow, The stable manifold theorem for non-linear stochastic systems with memory. I. Existence of the semiflow,, J. Functional Anal., 205 (2003), 271.  doi: 10.1016/j.jfa.2002.04.001.  Google Scholar

[26]

G. Ochs, "Weak Random Attractors,", Institut für Dynamische Systeme, (1999).   Google Scholar

[27]

M. Scheutzow, Qualitative behaviour of stochastic delay equations with a bounded memory,, Stochastics, 12 (1984), 41.  doi: 10.1080/17442508408833294.  Google Scholar

[28]

M. Scheutzow, Comparison of various concepts of a random attractor: A case study,, Arch. Math., 78 (2002), 233.  doi: 10.1007/s00013-002-8241-1.  Google Scholar

[29]

B. Schmalfuss, Backward cocycles and attractors for stochastic differential equations,, in, (1992), 185.   Google Scholar

[30]

G. Seifert, Positively invariant closed sets for systems of delay differential equations,, J. Diff. Eqs., 22 (1976), 292.   Google Scholar

[31]

H. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Mathematical Surveys and Monographs, 41 (1995).   Google Scholar

[32]

T. Tibor, H.-O. Walther and J. Wu, The structure of an attracting set defined by delayed and monotone positive feedback,, CWI Quarterly, 12 (1999), 315.   Google Scholar

show all references

References:
[1]

L. Arnold, "Random Dynamical Systems,", Springer Monographs in Mathematics, (1998).   Google Scholar

[2]

L. Arnold and I. Chueshov, Order-preserving random dynamical systems: Equilibria, attractors, applications,, Dynam. Stability Systems, 13 (1998), 265.   Google Scholar

[3]

L. Arnold and I. Chueshov, Cooperative random and stochastic differential equations,, Discrete Continuous Dynam. Systems - A, 7 (2001), 1.   Google Scholar

[4]

B. Bergé, I. Chueshov and P. Vuillermot, On the behavior of solutions to certain parabolic SPDE's driven by Wiener processes,, Stochastic Process. Appl., 92 (2001), 237.  doi: 10.1016/S0304-4149(00)00082-X.  Google Scholar

[5]

I. Chueshov, Order-preserving random dynamical systems generated by a class of coupled stochastic semilinear parabolic equations,, in, (2000), 711.   Google Scholar

[6]

I. Chueshov, "Monotone Random Systems: Theory and Applications,", Lecture Notes in Mathematics, 1779 (2002).  doi: 10.1007/b83277.  Google Scholar

[7]

I. Chueshov and M. Scheutzow, On the structure of attractors and invariant measures for a class of monotone random systems,, Dynamical Systems: An International Journal, 19 (2004), 127.  doi: 10.1080/1468936042000207792.  Google Scholar

[8]

I. Chueshov and B. Schmalfuss, Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions,, Discrete Continuous Dynam. Systems - A, 18 (2007), 315.  doi: 10.3934/dcds.2007.18.315.  Google Scholar

[9]

I. Chueshov and P. Vuillermot, Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Stratonovitch's case,, Probab. Theory Rel. Fields, 112 (1998), 149.  doi: 10.1007/s004400050186.  Google Scholar

[10]

I. Chueshov and P. Vuillermot, Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Itô's case,, Stoch. Anal. Appl., 18 (2000), 581.  doi: 10.1080/07362990008809687.  Google Scholar

[11]

I. Chueshov and P. Vuillermot, Non-random invariant sets for some systems of parabolic stochastic partial differential equations,, Stoch. Anal. Appl., 22 (2004), 1421.  doi: 10.1081/SAP-200029487.  Google Scholar

[12]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Theory Relat. Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[13]

A. Es-Sarhir, M. Scheutzow and O. van Gaans, Invariant measures for stochastic functional differential equations with superlinear drift term,, Diff. Integral Equations, 23 (2010), 189.   Google Scholar

[14]

M. Hairer, J. Mattingly and M. Scheutzow, Asymptotic coupling and a general form of Harris' theorem with applications to stochastic delay equations,, Probab. Theory Relat. Fields, 149 (2011), 223.  doi: 10.1007/s00440-009-0250-6.  Google Scholar

[15]

P. Imkeller and M. Scheutzow, On the spatial asymptotic behaviour of stochastic flows in Euclidean space,, Ann. Probab., 27 (1999), 109.  doi: 10.1214/aop/1022677255.  Google Scholar

[16]

K. Itô and M. Nisio, On stationary solutions of a stochastic differential equation,, J. Math. Kyoto Univ., 4 (1964), 1.   Google Scholar

[17]

M. Krasnosel'skii, "Positive Solutions of Operator Equations,", Noordhoff Ltd. Groningen, (1964).   Google Scholar

[18]

M. Krasnosel'skii, Je. A. Lifshits and A. Sobolev, "Positive Linear Systems. The Method of Positive Operators,", Sigma Series in Applied Mathematics, 5 (1989).   Google Scholar

[19]

H. Kunita, "Stochastic Flows and Stochastic Differential Equations,", Cambridge Studies in Advanced Mathematics, 24 (1990).   Google Scholar

[20]

R. Martin and H. Smith, Abstract functional differential equations and reaction-diffusion systems,, Trans. AMS, 321 (1990), 1.  doi: 10.2307/2001590.  Google Scholar

[21]

R. Martin, Jr. and H. Smith, Reaction-diffusion systems with time delays: Monotonicity, invariance, comparison and convergence,, J. Reine Angew. Math., 413 (1991), 1.   Google Scholar

[22]

S. Mohammed, Nonlinear flows of stochastic linear delay equations,, Stochastics, 17 (1986), 207.  doi: 10.1080/17442508608833390.  Google Scholar

[23]

S. Mohammed, The Lyapunov spectrum and stable manifolds for stochastic linear delay equations,, Stochastics and Stochastic Reports, 29 (1990), 89.   Google Scholar

[24]

S. Mohammed and M. Scheutzow, Spatial estimates for stochastic flows in Euclidean space,, Ann. Probab., 26 (1998), 56.  doi: 10.1214/aop/1022855411.  Google Scholar

[25]

S. Mohammed and M. Scheutzow, The stable manifold theorem for non-linear stochastic systems with memory. I. Existence of the semiflow,, J. Functional Anal., 205 (2003), 271.  doi: 10.1016/j.jfa.2002.04.001.  Google Scholar

[26]

G. Ochs, "Weak Random Attractors,", Institut für Dynamische Systeme, (1999).   Google Scholar

[27]

M. Scheutzow, Qualitative behaviour of stochastic delay equations with a bounded memory,, Stochastics, 12 (1984), 41.  doi: 10.1080/17442508408833294.  Google Scholar

[28]

M. Scheutzow, Comparison of various concepts of a random attractor: A case study,, Arch. Math., 78 (2002), 233.  doi: 10.1007/s00013-002-8241-1.  Google Scholar

[29]

B. Schmalfuss, Backward cocycles and attractors for stochastic differential equations,, in, (1992), 185.   Google Scholar

[30]

G. Seifert, Positively invariant closed sets for systems of delay differential equations,, J. Diff. Eqs., 22 (1976), 292.   Google Scholar

[31]

H. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", Mathematical Surveys and Monographs, 41 (1995).   Google Scholar

[32]

T. Tibor, H.-O. Walther and J. Wu, The structure of an attracting set defined by delayed and monotone positive feedback,, CWI Quarterly, 12 (1999), 315.   Google Scholar

[1]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[2]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[3]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[4]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[5]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[6]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[7]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[8]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[9]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[10]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[11]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[12]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[13]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[14]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[15]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[16]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[17]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[18]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[19]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[20]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]