-
Previous Article
Asymptotic behaviour for a class of delayed cooperative models with patch structure
- DCDS-B Home
- This Issue
-
Next Article
Invariance and monotonicity for stochastic delay differential equations
Exponential stability for a class of linear hyperbolic equations with hereditary memory
1. | Politecnico di Milano - Dipartimento di Matematica "F. Brioschi", Via Bonardi 9, 20133 Milano |
2. | Politecnico di Milano - Dipartimento di Matematica “F. Brioschi”, Via Bonardi 9, 20133 Milano, Italy |
References:
[1] |
Asymptot. Anal., 50 (2006), 269-291. |
[2] |
Asymptot. Anal., 46 (2006), 251-273. |
[3] |
Arch. Rational Mech. Anal., 37 (1970), 297-308. |
[4] |
SIAM J. Math. Anal., 33 (2002), 1090-1106.
doi: 10.1137/S0036141001388592. |
[5] |
Arch. Rational Mech. Anal., 116 (1991), 139-152.
doi: 10.1007/BF00375589. |
[6] |
C. R. Acad. Sci. Paris Sér. A-B, 277 (1973), B471-B473. |
[7] |
Comm. Appl. Anal., 5 (2001), 121-133. |
[8] |
Arch. Rational Mech. Anal., 31 (1968), 113-126.
doi: 10.1007/BF00281373. |
[9] |
Springer-Verlag, New York, 1965. |
[10] |
in "Analysis and Numerics for Conservation Laws," Springer, Berlin, (2005), 257-279.
doi: 10.1007/3-540-27907-5_11. |
[11] |
Chapman & Hall/CRC Research Notes in Mathematics, 398, Chapman & Hall/CRC, Boca Raton, FL, 1999. |
[12] |
Phys. Rev. E (3), 60 (1999), 5231-5243.
doi: 10.1103/PhysRevE.60.5231. |
[13] |
Phys. Rev. E (3), 56 (1997), 6557-6563.
doi: 10.1103/PhysRevE.56.6557. |
[14] |
Quart. Appl. Math., 52 (1994), 628-648. |
[15] |
SIAM J. Appl. Math., 46 (1986), 171-188.
doi: 10.1137/0146013. |
[16] |
Commun. Pure Appl. Anal., 9 (2010), 721-730.
doi: 10.3934/cpaa.2010.9.721. |
[17] |
Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[18] |
Trans. Amer. Math. Soc., 284 (1984), 847-857.
doi: 10.2307/1999112. |
show all references
References:
[1] |
Asymptot. Anal., 50 (2006), 269-291. |
[2] |
Asymptot. Anal., 46 (2006), 251-273. |
[3] |
Arch. Rational Mech. Anal., 37 (1970), 297-308. |
[4] |
SIAM J. Math. Anal., 33 (2002), 1090-1106.
doi: 10.1137/S0036141001388592. |
[5] |
Arch. Rational Mech. Anal., 116 (1991), 139-152.
doi: 10.1007/BF00375589. |
[6] |
C. R. Acad. Sci. Paris Sér. A-B, 277 (1973), B471-B473. |
[7] |
Comm. Appl. Anal., 5 (2001), 121-133. |
[8] |
Arch. Rational Mech. Anal., 31 (1968), 113-126.
doi: 10.1007/BF00281373. |
[9] |
Springer-Verlag, New York, 1965. |
[10] |
in "Analysis and Numerics for Conservation Laws," Springer, Berlin, (2005), 257-279.
doi: 10.1007/3-540-27907-5_11. |
[11] |
Chapman & Hall/CRC Research Notes in Mathematics, 398, Chapman & Hall/CRC, Boca Raton, FL, 1999. |
[12] |
Phys. Rev. E (3), 60 (1999), 5231-5243.
doi: 10.1103/PhysRevE.60.5231. |
[13] |
Phys. Rev. E (3), 56 (1997), 6557-6563.
doi: 10.1103/PhysRevE.56.6557. |
[14] |
Quart. Appl. Math., 52 (1994), 628-648. |
[15] |
SIAM J. Appl. Math., 46 (1986), 171-188.
doi: 10.1137/0146013. |
[16] |
Commun. Pure Appl. Anal., 9 (2010), 721-730.
doi: 10.3934/cpaa.2010.9.721. |
[17] |
Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[18] |
Trans. Amer. Math. Soc., 284 (1984), 847-857.
doi: 10.2307/1999112. |
[1] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[2] |
Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055 |
[3] |
Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021083 |
[4] |
Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2777-2808. doi: 10.3934/dcds.2020385 |
[5] |
Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045 |
[6] |
Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, 2021, 20 (3) : 975-994. doi: 10.3934/cpaa.2021002 |
[7] |
Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021051 |
[8] |
Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021082 |
[9] |
Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051 |
[10] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205 |
[11] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031 |
[12] |
Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057 |
[13] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3683-3708. doi: 10.3934/dcds.2021012 |
[14] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[15] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016 |
[16] |
Youjun Deng, Hongyu Liu, Xianchao Wang, Dong Wei, Liyan Zhu. Simultaneous recovery of surface heat flux and thickness of a solid structure by ultrasonic measurements. Electronic Research Archive, , () : -. doi: 10.3934/era.2021027 |
[17] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015 |
[18] |
Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405 |
[19] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[20] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]